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Chapter 1Introdu
tion
1.1 Fun
tion theoryIn this se
tion I re
olle
t some theorems from multi-variable fun
tion theorythat are used in this paper. They are all quite elementary and omitted proofs
an be found in [G℄.De�nition 1.1 A subset U � C n is 
alled a domain if it is open and 
onne
ted.Theorem 1.1 (Open mapping theorem) Let U � C n be a domain andF : U ! Ca non-
onstant holomorphi
 fun
tion, then F is an open mapping.Theorem 1.2 (Maximum prin
iple) Let (�; �) denote the standard hermi-tian form on Cm , and let U � C n be a domain. If a holomorphi
 mappingF : U ! Cmis su
h that the (real valued) fun
tionz 7! (F (z); F (z))attains a maximum on U , then F is a 
onstant mapping.Proof: Suppose that (F (zo); F (zo)) = M is maximal for some zo 2 U . De�nea holomorphi
 fun
tion ' on U by:'(z) = (F (z); F (zo))4



Then the S
hwarz inequality yieldsj'(z)j2 � (F (z); F (z)) �M �M2Now be
ause '(zo) =M , the open mapping theorem implies that ' is 
onstanton U . Again by S
hwarz, we 
on
lude that F maps into the 
ir
le �1 � F (zo),where �1 is the unit 
ir
le in C . By the open mapping theorem it follows thatF has to be a 
onstant.2De�nition 1.2 De�ne � = fz 2 C j jzj < 1g�� = �nf0gand for k � m:�m;k = f(z1; : : : ; zm) 2 �m j zj 6= 0 for some j � kgTheorem 1.3 (Hartog's theorem) Let m; k be two integers, m � k � 2, andF : �m;k ! Ca holomorphi
 fun
tion. Then F extends to a holomorphi
 fun
tion on �m.Theorem 1.4 (Riemann extension theorem) Let m � 1 be an integer andF : �m;1 ! Ca holomorphi
 fun
tion su
h that for any w 2 �m�1 the fun
tionz 7! F (z; w)extends holomorphi
ally to �. Then F extends holomorphi
ally to �m.Theorem 1.5 (Isomorphism theorem) Let m; k be two integers, m � k �2. If a holomorphi
 mapping F : �m;k ! Cmis lo
ally biholomorphi
, then F extends to a lo
ally biholomorphi
 mapping on�m.Proof: By Hartog's theorem, F extends holomorphi
ally to �m. The fun
tionj = det��Fi�zj �is holomorphi
 on �m and non-vanishing on �m;k. Hen
e 1=j is holomorphi
on �m. In parti
ular, j is non-vanishing throughout �m. This implies that Fis lo
ally biholomorphi
. 2 5



De�nition 1.3 If X is a topologi
al spa
e and x 2 X we denote its fundamentalgroup with base point x by �1(X; x). If g1 and g2 are the homotopy 
lasses ofloops 
1 and 
2 respe
tively then g1g2 is the homotopy 
lass of the 
on
atenation
1 � 
2 obtained by passing along 
1 and 
2 in this order.De�nition 1.4 Let X and Y be 
onne
ted 
omplex manifolds. A surje
tiveholomorphi
 map � : X ! Y is 
alled a 
overing map if every point y 2 Y hasa neighborhood U su
h that the restri
tion of � to any 
onne
ted 
omponent of��1(U) is a biholomorphi
 map onto U .Let � : X ! Y be a 
overing map. The set of all biholomorphi
 mappings gof X onto itself satisfying �Æg = g equiped with the produ
t (g1; g2) 7! g1Æg2 is
alled the automorphism group of the 
overing and is denoted by Aut(X j Y ).The 
ardinality of any �bre of � is 
alled the degree of the 
overing (this doesnot depend on the 
hosen �bre).A 
overing is 
alled Galois if its automorphism group a
ts transitively on ea
h�bre.If X is simply 
onne
ted then it is 
alled a universal 
overing of Y .Theorem 1.6 Suppose � : X ! Y is a universal 
overing map and y 2 Y .The groups �1(Y; y) and Aut(X j Y ) are 
anoni
ally isomorphi
.If � : X ! Y is a universal 
overing and g 2 �(Y; y) we write x 7! gx for the
orresponding 
overing automorphism.De�nition 1.5 Let Y be an analyti
 variety (see [G℄) and D � Y be a subva-riety su
h that Y nD is a 
omplex manifold (i.e. is smooth). Let � : X ! Y nDbe a Galois 
overing and take y 2 Y . If U is a 
onne
ted neighborhood of y su
hthat UnD is 
onne
ted then let d(�; U) be the degree of the restri
tion of � toany 
onne
ted 
omponent of ��1(U). The lo
al degree of � at y is the minimumof d(�; U) taken over all neighborhoods U as before.De�nition 1.6 Let X and Y be 
onne
ted analyti
 manifolds. A surje
tiveholomorphi
 map � : X ! Y is 
alled a rami�ed 
overing if it satis�es thefollowing two 
onditions.1. Every y 2 Y has a neighborhood U su
h that the restri
tion of � to any
onne
ted 
omponent of ��1(U) is a �nite bran
hed 
overing of U in thesense of [G℄.2. If x1 and x2 are elements in X su
h that �(x1) = �(x2) then there is abiholomorphi
 mapping g of X onto X su
h that �Æg = � and g(x1) = x2.6



The group of all biholomorphi
 mappings g of X onto X su
h that �Æg = � is
alled the automorphism group of the 
overing and is denoted as Aut(X j Y ).Let � : X ! Y be a rami�ed 
overing. The maximal 
ardinality of a �bre of �is 
alled the degree of the 
overing. If y 2 Y and U is a neighborhood of y thenlet d(�; U) be the degree of � restri
ted to any 
onne
ted 
omponent of ��1(U).The lo
al degree of � at y is the minimum of all degrees d(�; U) taken over allneighborhood s U of y.1.2 The symmetri
 groupSome notions and te
hniques used in this thesis will be introdu
ed for the exam-ple of the root system of type An. This has the advantage that the asso
iatedre
e
tion group is the symmetri
 group Sn+1. The stru
ture of this group andits polynomial invariants will be familiar to the reader. Nevertheless, even forthis 
ase one 
an prove non-trivial results. Studying the symmetri
 group leadsto an intrinsi
 proof of a theorem by Orlik and Solomon [OS℄ on the invariants ofShephard groups related to Sn+1 and a result of Coxeter [C℄ on presentations ofsu
h groups. The proofs in [OS℄ and [C℄ are based on a 
ase by 
ase veri�
ationusing a 
omputer.Consider the symmetri
 group Sn+1 for some n � 1. It has a natural represen-tation � on C n+1 . If e1; : : : ; en+1 is the 
anoni
al basis of C n+1 and � 2 Sn+1then �(�)ej = e�(j).Let z1; : : : ; zn+1 denote the 
anoni
al linear 
oordinates on C n+1 . It is wellknown that the algebra P [C n+1 ℄Sn+1 of symmetri
 polynomials on C n+1 is gen-erated by the elementary symmetri
 polynomials s1; : : : ; sn+1. These are de�nedby n+1Yj=1(X � zj) = Xn+1 � s1Xn + : : :+ (�1)n+1sn+1in parti
ular s1 = z1 + : : : + zn+1 and sj is homogeneous of degree j. Therestri
tion of � to the n-dimensional subspa
e V given by s1 = 0 is irredu
ible. Inthe rest of this introdu
tion we use this restri
tion. The square of the polynomialÆ on V given by Æ = Y1�i<j�n+1(zi � zj)is 
learly symmetri
. Hen
e Æ2 = D(s2; : : : ; sn+1) for some polynomial D 2C [x1 ; : : : ; xn℄ in the indeterminates x1; : : : ; xn. This D is 
alled the dis
riminantof Sn+1. Note that Æ vanishes at z 2 V if and only if zi = zj at z for some i 6= j,i.e. if and only if z is �xed by �(i j). The 
omplement of the vanishing lo
us of Æis 
alled V reg, a point in this 
omplement is 
alled regular. Note that a point is7



regular pre
isely if its Sn+1-orbit 
ontains (n+ 1)! points. The vanishing lo
usof D on C n is denoted by � or �n�1 to indi
ate the dimension.The set � has a natural strati�
ation as follows. Let (a1; : : : ; am) be a non-de
reasing sequen
e of integers su
h that a1 > 1 and jaj := a1+ : : :+am � n+1.Let �(a1;:::;am) denote the stratum of all points (x1; : : : ; xn) 2 � su
h that thepolynomial Xn+1 + x1Xn�1 � : : :+ (�1)n+1xnhas exa
tly m multiple zeroes with multipli
ities a1; : : : ; am respe
tively. Forexample �(n+1) = f0g and �(2) is the \subregular" stratum of dimension n�1.If x 2 �(a1;:::;am) then there exists a 
oordinate neighborhood of x that isisomorphi
 to a Cartesian produ
t of m + 1 fa
tors of the following kind: An(n + m � jaj)-dimensional polydis
 and for ea
h 1 � j � m the 
omplementof �aj�2 in an (aj � 1)-dimensional polydis
. We will make use of this lo
alstru
ture later on in an indu
tive argument on the dimension n.Using the elementary symmetri
 polynomials as 
oordinates we get a mapS : V ! C n ; S : z 7! (s2(z); : : : ; sn+1(z)):To study the 
omplement C nn� �x a base point u = (u1; : : : ; un+1) 2 V su
hthat uj 2 R for all j and u1 < u2 < : : : < un+1. For j = 1; : : : ; n de�ne a path
j 
onne
ting u with �(j j+1)u as follows
j(t) = u+ 1� e�it2 (�(j j+1)u� u); t 2 [0; 1℄:Theorem 1.7 The fundamental group G := �1(C nn�; u) is generated by thehomotopy 
lasses gj of the loops SÆ
j . Moreover it has the following presenta-tion hg1; : : : ; gn j gigj = gjgi; if 1 � i; j � n and ji� jj > 1gjgj+1gj = gj+1gjgj+1; all 1 � j < niProof: See [FN℄. 2The group G is isomorphi
 to the braid group of n+1 strings as introdu
ed byArtin [A1,A2℄. For any integer p � 2 we denote the smallest normal subgroup ofG 
ontaining all elements gpj by �(p). The quotient G=�(p) is 
alled a trun
atedbraid group. We 
an now prove an important geometri
 property of the map S.Theorem 1.8 The map S is a bran
hed 
overing map with bran
h lo
us �.The restri
tion of S to V reg is a Galois 
overing of C nn� of lo
al degree twoalong �(2). Moreover it is universal with respe
t to this property.Proof: That S is a 
overing map with bran
h lo
us � follows from the fa
t thatwe 
an re
over z from (s2(z); : : : ; sn+1(z)) upto the Sn+1-a
tion. Moreover Sn+18



a
ts transitively on the �bres. This also shows that the lo
al degree along �(2)is two. The universal 
overing of C nn� has an automorphism group isomorphi
to G. Now it is well known that Sn+1 �= G=�(2). This shows that the 
overingS is universal. 2This ni
e theorem gives rise to the following question. For whi
h p � 3 is theuniversal Galois 
overing of C nn� of lo
al degree p along �(2) a �nite 
overingand what is the stru
ture of su
h a 
overing?In this introdu
tion we will sket
h a proof of the following result.Theorem 1.9 Suppose p � 3 is su
h that 1 � (n + 1)(1=2 � 1=p) > 0. Thenthe trun
ated braid group G=�(p) has a faithful representation �p on an n-dimensional 
omplex ve
tor spa
e E su
h that the image G(p) � End(E) is �niteand generated by 
omplex re
e
tions �p(gj) of order p. Moreover there are homo-geneous h1; : : : ; hn 2 P [E℄ generating P [E℄G(p) su
h that (h1; : : : ; hn) : E ! C nis a rami�ed 
overing with bran
h lo
us � and of lo
al degree p. All possibilitiesare listed in the following table:n 1 2 3 4p � 3 3; 4; 5 3 3Proof: The proof is a 
ombination of linear algebra and 
omplex analysis. Theidea is to 
onstru
t a fun
tion of Nilsson 
lass [D℄ of determination order n onV reg with some Sn+1-invarian
e and homogeneity properties. This indu
es amultivalued map ev : C nn� ! E for some 
omplex ve
tor spa
e E and therepresentation �p by analyti
 
ontinuation. Then it is proved that ev has asingle valued inverse h on E whi
h is polynomial and �p-invariant, proving thetheorem.The 
ase n = 1 is trivial. Rami�ed 
overings of any positive lo
al degree at0 2 C are given by the maps x 7! xp. Therefore we assume that n is at least 2.Let U � V reg be a simply 
onne
ted neighborhood of u that does not interse
tany other of its Sn+1-
onjugates. Take k 2 [0; 1=2) and z = (z1; : : : ; zn+1) 2 Uwith real 
oordinates. De�ne a holomorphi
 di�erential form �(k; z) on theextended upper half planeHz := fs 2 C j Im(s) � 0; s 6= zj ; j = 1; : : : ; n+ 1gby �(k; z) := n+1Yj=1(zj � s)�kdswhere we take ab := exp(b � log a) for a > 0. For ea
h j = 1; : : : ; n de�ne afun
tion fj(k; �) on U byz 7! fj(k; z) := Z zj+1zj �(k; z):9



Note that in 
ase k = 0 these are just n independent linear fun
tions on V .Lemma 1.1 The following properties for the fj(k; �) hold:1. Any fj(k; �) extends to a multivalued holomorphi
 fun
tion on V reg.2. The fun
tions f1(k; �); : : : ; fn(k; �) on U are linearly independent over C .3. The C -ve
tor spa
e F (k) spanned by the fj(k; �) is invariant under analyti

ontinuation.4. Ea
h fj(k; �) is homogeneous of degree 1� (n+ 1)k.5. If � 2 Sn+1 and f [
℄ is the analyti
 
ontinuation of f 2 F (k) to �(�)Ualong a path 
 
onne
ting u and �(�)u then z 7! f [
℄(�(�)z) is again anelement of F (k).Proof: All statements ex
ept 2 
an be easily veri�ed using the de�nition of thefj(k; �). A proof of 2 is given in the next 
hapter. 2From these properties we 
on
lude that the map S indu
es an n-dimensionalve
tor spa
e FS(k) of fun
tions on S(U), spanned by the fun
tionsej(k; �) := e��ijkfj(k; �)Æ(SjU )�1:This spa
e is invariant under analyti
 
ontinuation along loops in C nn�. Theresulting right representationMk : G! End(FS(k))is 
alled the monodromy representation.De�ne q as exp(�2�ik) and q1=2 = exp(��ik). We omit the proofs of thefollowing two theorems.Theorem 1.10 For 1 � i; j � n, i 6= j we have:1. Mk(gj)ej(k; �) = �qej(k; �).2. Mk(gj)ei(k; �) = ei(k; �) if ji� jj > 1.3. Mk(gj)ei(k; �) = ei(k; �) + q1=2ej(k; �) if ji� jj = 1.In parti
ular Mk(gj) is a 
omplex re
e
tion on FS(k).10



Theorem 1.11 With respe
t to the basis ej(k; �), j = 1; : : : ; n, the followingn� n matrix de�nes an Mk-invariant Hermitian stru
ture on FS(k).Hk := 0BBBBB� 2 
os(�k) �1 ;�1 2 
os(�k) �1. . . . . . . . .�1 2 
os(�k) �1; �1 2 
os(�k)
1CCCCCAThe Hermitian form Hk is positive de�nite i� 1� (n+ 1)k > 0.Note that Mk(gj) and Hk 
an be interpreted as a deformation in k of thegenerating re
e
tions of � and the Hermitian form on V .Denote the dual of FS(k) by Ek. There is a 
anoni
al mapev : S(U)! Ek; x 7! evaluation at x
alled the evaluation map. It 
an be 
ontinued analyti
ally along any path inC nn� so we will think of it as a multivalued fun
tion on this spa
e. This mapis weighted homogeneous on C nn�, i.e.ev(�2x1; �3x2; : : : ; �n+1xn) = �1�(n+1)kev(x1; : : : ; xn)for any � 2 C � . Its lo
al properties are as follows.Theorem 1.12 The evaluation map is everywhere lo
ally biholomorphi
. Forany 
ontinuation of ev near a point p 2 �(2) there are lo
al 
oordinates y1; : : : ; ynnear p and linear 
oordinates on Ek su
h that � has lo
al equation y1 = 0 andthe evaluation map is given byx 7! (y1=2�k1 ; y2; : : : ; yn)for x near p.Proof: An argument involving the expli
it integral formulas for ej(k; �) and theso 
alled Wronskian of the fun
tion spa
e FS(k). Details 
an be found in thenext two 
hapters. 2Let M�k denote the transpose of Mk on Ek, i.e.(M�k (g)�)(f) = �(Mk(g)f)for all � 2 Ek and f 2 FS(k). Then M�k is a left representation.If � : eX ! C nn� is the universal 
overing then ev extends to a single valuedholomorphi
 map fev on eX and satis�esfev(g � x) =M�k (g)fev(x)11



for all 
overing automorphisms g 2 G. We denote the image of G under M�k byGk.Let p � 3 and k = 1=2�1=p be su
h that Hk > 0, i.e. 1�(n+1)k > 0. Then fevis �(p) invariant and des
ends to a single valued fun
tion evu on the universalGalois 
overing �u : Xu(p) := �(p)n eX ! C nn�of lo
al degree p along �(2). In parti
ular �(p) is 
ontained in the kernel ofM�k .Considering the lo
al stru
ture of C nn� near some point 6= 0 in � one 
anprove by indu
tion on the rank n that Xu(p) embeds in a rami�ed 
overing�r : Xr(p) ! C nnf0g with bran
h lo
us �nf0g. This means that Xu(p) =��1r (C nn�) and �u = �rjXu(p). Moreover evu extends to a lo
ally biholomorphi
map evr on Xr(p).The Hermitian form Hk on FS(k) indu
es an M�k -invariant metri
 on Ek. Byan elementary topologi
al argument and homogeneity of evr one dedu
es thefollowing. There exists a positive number � > 0 su
h that any lo
al inverse ofevr near a point y 2 Ek extends to a ball 
entered at y with radius � times thedistan
e of y to 0. Hen
e any lo
al inverse extends to Eknf0g be
ause this is asimply 
onne
ted set if n � 2. This shows that evr is an isomorphism between(Xr(p); G=�(p)) and (Eknf0g; Gk).Now the map h on Eknf0g ! C nnf0g given by h := �rÆev�1r is a map havingholomorphi
 fun
tions on Eknf0g as 
oordinates. Be
ause 0 is of 
o-dimensionat least two in Ek, Hartog's theorem implies that h extends holomorphi
ally toEk and 
learly h(0) = 0. In parti
ular h : Ek ! C n is a rami�ed 
overing of�nite degree and its automorphism group Gk is �nite.Note that for any j the jth 
oordinate hj of h is homogeneous of degreej+11� (n+1)kwhi
h must therefore be an integer. This implies that 1� (n+ 1)k itself equals1=m for some integer m � 2 and ea
h hj is a polynomial. Moreover ea
h hj isGk invariant and in fa
t they generate the algebra of Gk-invariant polynomialson Ek.Taking �p :=M�k , E := Ek and G(p) := Gk, the theorem is proved. 2The isomorphism G(p) �= G=�(p) gives a presentation of G(p) 
onsisting of thebraid relations for G and a relation for ea
h generator to make its order p.The existen
e of generators h1; : : : ; hn for P [E℄G(p) su
h that h is a bran
hed
overing with bran
h lo
us � is a spe
ial 
ase of a result in [OS℄ on dis
riminantsof Shephard groups. 12
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Chapter 2Lauri
ella's FD2.1 Abstra
tIn this 
hapter we study the moduli spa
e of (multivalued) di�erential forms onP1 with n+3 singular points with �xed exponents, for some n � 1. Integrationof su
h a form gives rise to a period or evaluation mapping 
losely related tothe hypergeometri
 fun
tion FD of Lauri
ella in n variables. If one imposessome 
onditions on the exponents at the singularities of the form this evalua-tion mapping establishes an isomorphism between a 
ertain geometri
 quotient(P1)n+3=PGL(2; C ) and a quotient B=� of a 
omplex hyperboli
 ball where �is indu
ed by monodromy of the evaluation mapping.2.2 Introdu
tionThe 
lassi
al hypergeometri
 fun
tion was already studied by Euler in the 18th
entury. More famous are the impressive results Gauss obtained 
on
erningthis fun
tion, whi
h is also referred to as Gauss' hypergeometri
 fun
tion. Thesubje
t of this 
hapter was initiated in the 19th 
entury by Riemann [R℄ andS
hwarz [S℄. Riemann found a parti
ularly ni
e way to study properties likemonodromy and transformation formulae for the Gauss fun
tion. S
hwarz thenfound all parameters for whi
h the Gauss fun
tion has a �nite monodromygroup, i.e. for whi
h it is algebrai
. His methods were geometri
 of nature andlater Klein generalized his work to obtain dis
rete monodromy groups (relatedto the so-
alled Klein triangle groups).After this, generalizations have been 
arried out in two dire
tions. In 1989 (!)Beukers and He
kman [BH℄ found the parameters for whi
h the higher hyper-geometri
 fun
tion nFn�1 has �nite monodromy. In this dire
tion, the question14



remains when this higher hypergeometri
 fun
tion has dis
rete monodromy. Aquestion whi
h is, as far as I know, not yet answered. The se
ond dire
tion ofgeneralizations of the 
lassi
al work was in several variables. Hypergeometri
fun
tions of two variables were introdu
ed by Appell [A,AK℄. Pi
ard then usedAppell's fun
tion F1 (Appell introdu
ed F1 up to F4) to study the same ques-tions about �niteness and dis
reteness of its monodromy. Though he 
ouldn'tsettle these questions in detail (in fa
t some of his arguments were wrong) hedid some important work on this fun
tion [P1..3℄.Little after Appell, Lauri
ella [L℄ gave a generalization of the fun
tions F1:::F4in arbitrarily many variables 
alled FD ; FA; FB ; FC respe
tively. In the 19700sTerada [T℄ used the Lauri
ella FD to 
ontinue Pi
ard's work. But he also did nothave the 
omplete proofs, though he did get the right answers. Then some tenyears later the famous paper by Deligne and Mostow was published [DM℄. Theyinvestigated the same questions as Terada and have given a rigorous treatment ofthe subje
t. Re
ently a very ni
e paper by Thurston [Th℄ was published in whi
hhe studies a related moduli problem but now using 
ombinatorial te
hniques andtheory of 
oni
 manifolds. The word hypergeometri
 fun
tion does not appearin his paper.The intention of this 
hapter is to 
ombine some ideas found in [DM℄ and [Th℄to get a fairly elementary treatment of the subje
t. I would like to thankG. He
kman, for many fruitful dis
ussions, E. Looijenga for introdu
ing me tothe subje
t of Geometri
 Invariant Theory and H. de Vries for 
areful readingof the manus
ript.2.3 The hypergeometri
 fun
tion FDLet n 2 N be at least 1. In this se
tion we �x parameters �0; : : : ; �n+2 2 (0; 1)su
h that P�j = 2. Take real numbers zo1 ; : : : ; zon su
h that 0 < zo1 < : : : <zon < 1 and let zo be the point (zo1 ; : : : ; zon) on (P1)n where we think of P1 asC [ f1g. This point will serve later on as a base point for some fundamentalgroup et
. Now take z = (z1; : : : ; zn) 2 C n and assume for the moment thatalso 0 < z1 < : : : < zn < 1. We sometimes denote 0; 1;1 as z0; zn+1; zn+2respe
tively. Subs
ripts should be taken mod n+ 3 hen
e �n+3 = �0 et
.De�ne on the union of the upper half plane H with the intervals (zj ; zj+1),j = 0; : : : ; n+ 2 the holomorphi
 fun
tion'(z1; : : : ; zn) : s 7! '(z1; : : : ; zn; s) = n+1Yj=0(zj � s)��jsu
h that '(z; s) > 0 if s < 0. The exponent of the di�erential '(z; s)ds atin�nity equals ��n+2. Integrating this form along 
urves in H yields the so15




alled S
hwarz-Christo�el mapping on H:S(z; t) = Z t0 '(z; s)dsHere we integrate along any path through H 
onne
ting 0 and t. This mapping
an be des
ribed geometri
ally in a very ni
e way. It maps H biholomorphi
allyonto the interior of a polygon P (z) with verti
es (in 
ounter 
lo
kwise order)vj = S(z; zj). At vertex vj the interior angle equals (1� �j)�, so by our 
hoi
eof the parameters �j , the polygon P (z) will be 
onvex.
Hr r r r r0 z1 z2 1 1 -S(z; t) 
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For j 2 f0; : : : ; n + 2g let ej(z) = vj+1 � vj be the j-th dire
ted edge of P (z),or: ej(z) = Z zj+1zj '(z; s)dsThis integral formula shows that edges are analyti
 fun
tions of their argumentz near the basepoint zo and 
an be 
ontinued analyti
ally throughoutX � (P1)ngiven by: X = f(u1; : : : ; un) 2 (P1)n j #f0; u1; : : : ; un; 1;1g = n+ 3gClearly the sum of all n + 3 edges equals zero, but there is even a strongerdependen
e.Lemma 2.1 As analyti
 fun
tions of the parameter z, any set of (n+2) edgesis linearly dependent (over C ).Proof: Let E be a set of (n + 2) edges and let ej be the edge that is not
ontained in E. Take z near zo and real valued. Re
e
t P (z) in the edge
onne
ting vj and vj+1 and glue the image to P (z). The dire
ted edges of thisbigger polygon are exa
tly ek and 
kek for k 6= j and some n+2 
onstants (i.e.not depending on z) on the unit 
ir
le, hen
eXk 6=j(1 + 
k)ek(z) = 0is a non trivial linear relation on whi
h holds independently of z. 216



Not all (n + 1)-tuples of edges need to be linearly independent. However, wewill show that an independent set of (n+ 1) edges always exists.Theorem 2.1 Let J = f0; : : : ; n+ 2gnfk1; k2g be a set of n+ 1 elements. Theedges ej, j 2 J are linearly dependent i� both edges ek1 and ek2 are \parallel",i.e. i� �k1+1 + �k1+2 + : : :+ �k2 = 1:(This means that if z is 
hosen real valued then the edges ek1;2(z) of P (z) arereally parallel.)Proof: The \if" part follows from the proof of the previous lemma (if remain-ing edges are parallel, some 
k will equal �1). Now suppose that the remainingedges are not parallel. Then one 
he
ks that any small variation of the lengthsof the edges of P (zo) with indi
es in J still realizes a 
onvex polygon P 0 (with-out 
hanging the interior angles). Of 
ourse the lengths of the remaining twoedges are then 
ompletely determined. Be
ause any polygonal domain is thebiholomorphi
 image of H under a S
hwarz-Christo�el mapping, it follows thatthere are numbers 0 < w1 < : : : < wn < 1 su
h that the mapping S(w; t)maps H onto the interior of a 
onvex polygon whi
h is aÆnely isomorphi
 toP 0. These n+ 1 degrees of freedom show that the edge fun
tions with index inJ are linearly independent. 2The edge en+1(z) (upto a s
alar) is known as the Lauri
ella hypergeometri
fun
tion FD . It is a generalization of the Gauss fun
tion in several variables.Taylor expansion at 0 using Euler's B fun
tion yields:e�i�n+2en+1(z) = e�i�n+2 Z 11 '(z; s)ds == �(1� �n+2)�(1� �n+1)�(�0 + : : :+ �n) Xm2Nn (1� �n+2)jmj(�)m(�0 + : : :+ �n)jmjm!zmHere multi index notation is used and moreover:(�)m = (�1)m1(�2)m2 � � � (�n)mnm! = m1!m2! � � �mn!The above sum is absolutely 
onvergent if jzj j < 1 for all j and is denoted byFD(1� �n+2; �1; : : : ; �n; �0 + : : :+ �n; z1; : : : ; zn)Note that if n = 1, we have:FD(�; �; 
; z1) = F (�; �; 
; z1)17



Remark 2.1 De�ne n+ 1 di�erential operators as follows:�j := zj ��zj ; j = 1; : : : ; n; � := �1 + : : :+ �nLet FD := FD(�; �1; : : : ; �n; 
; z1; : : : ; zn). Then one dedu
es from its powerseries expansion [(� + 
 � 1)�j � zj(� + �)(�j + �j)℄FD = 0for all j = 1; : : : ; n. The lo
al solution spa
e of these n equations at any nonsingular point is (n+1)-dimensional and spanned by the edges ej(z) for suitableparameters �. A solution f near z is 
ompletely determined by pres
ribing thevalues of f and all its (�rst order) partial derivatives at z.For any z 2 X let M(z) denote the pun
tured Riemann sphere, M(z) =P1nf0; 1; z1; : : : ; zn;1g. OnM(z) the volume form 
(z) = (i=2)j'(z; s)j2ds^dsis well de�ned (be
ause all �j are real). This form 
an be 
onsidered as the pullba
k of the eu
lidean volume on C by a \S
hwarz-Christo�el" mapping (whi
his 
lear if z is real valued). The volumeVol(M(z)) = ZM(z) 
(z)is positive and �nite. It 
an be expressed in a ni
e way using the verti
es vj(z).To do so, we introdu
e and study the notion of Area of loops in C .De�nition 2.1 Let 
 : [0; 1℄! C be a pie
ewise smooth loop (so 
(0) = 
(1)).We de�ne the Area of this loop by:Area(
) = 12i Z
 zdzThe area of a loop is just the eu
lidean area of the region in C that is en
losed inthis loop. (Every point is 
ounted as many times as the loop winds around it in
ounter 
lo
kwise dire
tion). The area of a loop gives rise to a hermitean form ona 
ertain (n + 1)-dimensional spa
e. De�ne �j = exp(�i�j) and !j = �0 � � ��jfor j 2 f0; : : : ; n + 2g. Then j!j j = 1 and !n+2 = 1. If w0; : : : ; wn+2 arethe 
anoni
al linear 
oordinates on C n+3 let Pol(�) � C n+3 be the (n + 1)-dimensional C -linear subspa
e de�ned by the linearly independent equationsn+2Xj=0 !jwj = n+2Xj=0 !jwj = 018



The R-linear subspa
e PolR(�) := Pol(�) \ Rn+3is a real form of Pol(�). To a ve
tor w 2 Pol(�) we asso
iate two pie
ewiselinear loops P+(w) and P�(w) whi
h pass through the points(0; !0w0; !0w0 + !1w1; : : : ; !0w0 + : : :+ !n+1wn+1)and (0; !0w0; !0w0 + !1w1; : : : ; !0w0 + : : :+ !n+1wn+1)respe
tively in the given order. Note that if w 2 PolR(�) then P�(w) is the
omplex 
onjugate of P+(w) and vi
e versa. We 
an now de�ne an hermitianstru
ture H on Pol(�) byH(w;w) = Area(P+(w)) �Area(P�(w))for all w 2 Pol(�). In parti
ular, if w 2 PolR(�) then H(w;w) = 2Area(P+(w)).If v and w are both in Pol(�) then by triangulating these polygons one 
an
ompute expli
itly (
oordinates of w and v indexed from 0 to n+ 2):H(v; w) = 14i X0�k<l�n+1(!k!l � !k!l)(vkwl + vlwk)Note that H restri
ted to PolR(�)2 is real valued. We will exploit this fa
t inthe proof of the following theorem.Theorem 2.2 Let n be at least 2. Then the hermitean form H on Pol(�) ishyperboli
, i.e. has signature (1; n).Proof: By the remark above, it suÆ
es to show that the restri
tion of H onPolR(�)2 is hyperboli
. We will diagonalize this restri
tion step by step. Takew 2 Pol(�) \ Rn+3>0 . Be
ause n � 2 there is a number j 2 f0; : : : ; n + 2g su
hthat �j + �j+1 < 1. This implies that there are positive real numbers x; y su
hthat !j = x!j�1+y!j+1. Note that x and y do not depend on w but only on �.Now the part of the polygon P+(w) near the jth edge looks like an angle witha triangle T 
lipped o�:
(((((((((((llllll

ll
������vj

vj+1T ��	(1� �j � �j+1)�P+
19



The lengths of the edges of T are wj ; xwj and ywj respe
tively. The angle ofT opposite to the jth edge of P+(w) measures (1� �j � �j+1)�. Together thisshows Area(T ) = 12xy sin((�j + �j+1)�)w2j =: 12 tw2jLet the n+ 2 parameters �00; : : : ; �0n+1 be given by�0; : : : ; �j�1; �j + �j+1; �j+2; : : : ; �n+2respe
tively and w0 2 Rn+2 byw0 = (w0; : : : ; wj�1 + xwj ; wj+1 + ywj ; : : : ; wn+2)Then w0 2 PolR(�0) and if we glue T to P+(w) we obtain the bigger polygonP+(w0) having one vertex and edge less. Now t > 0 and 
learly2Area(P+(w)) = 2Area(P+(w0))� (ptwj)2Repeat this pro
edure of sti
king on triangles until, after n su
h steps, we rea
ha polygon P+(w00) whi
h is itself a triangle. (One only has to take 
are to avoida parallellogram on the way). The lengths of the edges of this triangle are allpositive linear 
ombinations of w0; : : : ; wn+2. Its area is quadrati
 in any lengthof an edge. So we 
onstru
ted n+1 real fun
tionals f0; : : : ; fn on PolR(�) su
hthat H(w;w) = 2Area(P+(w)) = f0(w)2 � f1(w)2 � : : :� fn(w)2and by 
onsidering ea
h redu
tion step we 
on
lude that these fun
tionals arelinearly independent.Be
ause Pol(�) \ Rn+3>0 is open in PolR(�) we 
on
lude that the latter equalityholds throughout PolR(�) if this open 
one would be non empty. Now 0 is
ontained in the 
onvex hull of the !j and any realisation of 0 as a 
onvex
ombination with all positive 
oeÆ
ients yields a non zero element of the open
one above. Hen
e the restri
tion of H to this real form is hyperboli
 and hen
eH is itself hyperboli
.2Here is how the volume of M(z) relates to this hermitean form.Theorem 2.3 For all z 2 X the following equality holds:Vol(M(z)) = H(w(z); w(z));where w(z) 2 Pol(�) is given byw(z) = (!0e0(z); !1e1(z); : : : ; !n+2en+2(z))and the edge fun
tions e0; : : : ; en+2 are 
ontinued analyti
ally along any pathfrom zo 2 X to z 2 X. 20



Proof: Take z in X . Let � : [0; 1℄! X be any smooth path in X 
onne
ting zoand z. We deform the half line [0;1℄ a

ordingly: Let 
 : [0; 1℄� [0; 1℄! P1(C )be 
ontinuous su
h that1. 
(s; �) is a smooth non self-interse
ting 
urve for all s 2 [0; 1℄.2. 
(s; 0) = 0, 
(s; 1) = 1 and 
(s; �) passes through the points �(s)j (1 �j � n) in this order.3. 
(0; �) parametrizes the half line [0;1℄.Take 
(�) := 
(1; �) Slit P1 open along 
 to obtain a simply 
onne
ted domainU . Let '(z; t) be a holomorphi
 bran
h ofn+1Yj=0(t� zj)��jfor t 2 U and let S(z; t) be holomorphi
 on U having '(z; t) as its derivative(with respe
t to t) and su
h that S(z; 0) = 0. The mapping S(z; t) resemblesthe S
hwarz-Christo�el mapping. Now by Stokes we have:Vol(M(z)) = ZU 
(z) = 12i Z�U S(z)dS(z)Note that the boundary of U 
onsists of twi
e the 
urve 
, on
e in ea
h dire
-tion. Let S+j and S�j respe
tively denote the images under S(z; t) of the pointsz0; : : : ; zn+2 when we pass from 0 to 1 along �U in positive and negative ori-entation respe
tively.

In parti
ular, note that S+j is the j-th vertex vj(z) (
ontinued along �). Thesenumbers satisfy:1. S+0 = S�0 = 0 and S+n+2 = S�n+2.2. For all j, !j(S+j+1 � S+j ) = !j(S�j+1 � S�j )21



De�ne wj := !j(S+j+1 � S+j ) = !jej(z) for 0 � j < n + 2. If we take wn+2 :=�S+n+2 = en+2(z) then w := (w0; : : : ; wn+2) 2 Pol(�)Let S+j (t) and S�j (t) be the bran
hes of S(z; t) on the 
urve segment [zj ; zj+1℄su
h that S�j (zj) = S�j and S�j (zj+1) = S�j+1. Then for all j there exist �j 2 Csu
h that: S+j (t) = !2jS�j (t) + �jSubstituting this in the RHS of the Stokes equality yields (integrations are along
): Vol(M(z)) = n+1Xj=0 12i  Z zj+1zj S+j (t)dS+j (t)� Z zj+1zj S�j (t)dS�j (t)! == n+1Xj=0 12i Z zj+1zj �j!2jdS�j (t) = n+1Xj=0 �j2i (S+j+1 � S+j )Hen
e this volume does depend only on the points S+j (= vj(z)), not on the 
urve
onne
ting them. Repla
ing the subsequent 
onne
ting 
urves all by straightline segments and re
alling the de�nition of w 2 Pol(�) we get:Vol(M(z)) = Area(P+(w)) �Area(P�(w)) = H(w;w)This proves the theorem. 22.4 Geometry and monodromy of FDIn this se
tion we will assume that the parameters �j are all rational. The edgefun
tions de�ned in the previous se
tion are multivalued analyti
 on X � (P1)n.They span lo
ally an (n + 1)-dimensional spa
e over C at any point of X . Byremark 2.1 we 
on
lude that the edges form in fa
t a lo
al system on X whi
hgives rise to a representation of the fundamental group ofX . The 
omplementDof X in (P1)n is the union of a �nite number of divisors with equations zi = zj .The spa
e (P1)n has a natural strati�
ation su
h that the dense open set Xis the highest dimensional stratum. The strata are indexed by partitions � off0; : : : ; n+ 2g satisfying(i) For all p 2 �: #p � n+ 1.(ii) For all p 2 �: #(p \ f0; n+ 1; n+ 2g) � 1.22



We de�ne a partial ordering on partitions su
h that �1 � �2 i� �2 is a re�ne-ment of �1. The stratum D� for su
h a partition is de�ned byD� = f(z1; : : : ; zn) 2 P1(C )n j zi = zj i� fi; jg � p for some p 2 �gwhere i and j range over f0; : : : ; n + 2g. Then the dimension of D� in (P1)nis #� � 3. Note that X is the stratum 
orresponding to the partitioning insingletons and that D� 
ontains D�0 in its 
losure i� �0 � �. The edge fun
tionis really a fun
tion F of Nilsson 
lass on (P1)n of determination order n+1 andsingularities along D. However, to study the fun
tion F it will be useful toembed X in a di�erent n-dimensional spa
e, Q, endowed with a strati�
ationsu
h that X is the stratum of highest dimension. The strata are indexed bypartitions � of f0; : : : ; n+ 2g satisfying(i) For all p 2 �: #p � n+ 1.(ii) For all p 2 �: Pj2p �j < 1:We 
all su
h partitions �-stable or just stable. The stratum D� will again beof dimension #�� 3. We 
onstru
t Q by using Geometri
 Invariant Theory ofHilbert-Deligne-Mumford [MF℄. Let N 2 N be the smallest 
ommon denomi-nator of all �j and set mj = N�j . Let for any m 2 Z, O(m) denote the linebundle of degree m over P1. If m � 0, we 
an interpret se
tions in this bundleas homogeneous polynomials of degree m on C 2 , where P1 = P(C 2 ). Let theline bundle L over (P1)n+3 be de�ned as the exterior tensor produ
t:L = n+2Oj=0 O(mj):Now PGL(C 2 ) a
ts by the diagonal a
tion on (P1)n+3 and be
ause Pjmj iseven, L admits a unique stru
ture of a homogeneous PGL(C 2 ) bundle. Withrespe
t to L, the semi-stable (resp. stable) points of (P1)n+3 are given byf(z0; : : : ; zn+2) j for all j; Xzi=zj �i � 1 (resp. < 1)gNow we take Q as the geometri
 quotient:Q = (P1)n+3stable=PGL(C 2 )The spa
e Q is a smooth (quasi proje
tive) variety (e.g. see [DO, 
hap. 2 Thm.2℄). We embed X in Q by(z1; : : : ; zn) 7! orbit of (0; z1; : : : ; zn; 1;1):23



For any stable partition �, de�ne the stratum D� byf(z0; : : : ; zn+2) j zi = zj i� fi; jg � p for some p 2 �g=PGL(C 2 )This de�nes a strati�
ation of Q as indi
ated. If �i + �j < 1 for some i 6= j wedenote the (n � 1)-dimensional stratum D� where � is the maximal partition
ontaining fi; jg by [i j℄.By identifying X and its embedding in Q, we 
an view the Nilsson 
lass fun
tionF as a Nilsson 
lass fun
tion on Q with singularities along the boundary of X .Let U � X � Q be a small simply 
onne
ted neighborhood of zo 2 X . LetV = V (U) denote the C -ve
torspa
e spanned by all determinations of F onU . Then by previously obtained results, V is (n+ 1)-dimensional. By analyti

ontinuation we get a natural right representation of the fundamental group ofX on V : M : �1(X; zo)! GL(V )We 
all this the monodromy representation. There is a 
anoni
al mapping of Uinto the dual V 0 of V , the evaluation mapping. It is given by:ev : U ! V 0; ev : z 7! evaluation at zNote that ev 
an be 
ontinued analyti
ally throughout X . Hen
eforth we willview ev as a multivalued holomorphi
 mapping of X into V 0. We want tounderstand the behaviour of this evaluation mapping, or in fa
t its proje
tiveversion: pev : X ! P(V 0)In parti
ular we want to study when (i.e. for whi
h �) this mapping has asingle valued holomorphi
 inverse on its image. If su
h an inverse exists, thisimplies that monodromy indu
es a dis
rete group in PGL(V 0). The idea is tostudy lo
al properties of pev �rst and use the results to understand the globalproperties.Theorem 2.4 The spa
e V 0 admits a hyperboli
 hermitean form H, invariantunder dual monodromy (the transpose of M , i.e. a left representation). More-over, evaluation maps X into the positive part of V 0 (with respe
t to H).Proof: Let w again be the (multivalued) mappingw(z) := (!0e0(z); !1e1(z); : : : ; !n+2en+2(z))Then w(z) 2 Pol(�). Be
ause e0; : : : ; en span V , by theorem 2.2 there exists ahyperboli
 hermitean matrix H 2 Mat(n+ 1; C ) su
h thatH(w(z); w(z)) = X0�i;j�nHijei(z)ej(z)24



for all z 2 X . Be
ause the left hand side of this equality equals Vol(M(z)) theright hand side is invariant under monodromy. Let �0; : : : ; �n be the dual basisof V 0 with respe
t to e0; : : : ; en. De�ne H(�i; �j) := Hij . This is an invarianthyperboli
 hermitean form and:H(ev(z); ev(z)) = H(Xi ei(z)�i;Xj ej(z)�j) ==Xi;j Hijei(z)ej(z) = Vol(M(z)) > 0This proves the theorem. 2The subspa
e B of P(V 0) given byB := f[v℄ j H(v; v) > 0gis isomorphi
 to the 
omplex unit ball in C n . By the previous theorem we
on
lude that pev maps X into B.Theorem 2.5 The mapping pev is everywhere lo
ally biholomorphi
.Proof: For y 2 X let f0; : : : ; fn be a lo
al basis of determinations and y1; : : : ; ynsome lo
al 
oordinates. Then pev is lo
ally biholomorphi
 at y i� the followingwronskian does not vanish near y:det0BBBBBB� f0 �f0�y1 : : : �f0�ynf1 �f1�y1 : : : �f1�yn... ... ...fn �fn�y1 : : : �fn�yn
1CCCCCCANow by remark 2.1 every determination near y is 
ompletely determined by itsvalue and those of its �rst order partial derivatives at y. This 
learly impliesthat the wronskian does not vanish at y. 2To examine lo
al behavior along the singular lo
us, we extend the integral rep-resentation of the edges tof(z0; : : : ; zn+1;1) 2 (P1)n+3 j #fz0; : : : ; zn+1;1g = n+ 3gby the formula Eij := (zn+1 � z0)1��n+2 Z zjzi n+1Yk=0(s� zk)��kds:25



Here integration is along any path avoiding (ex
ept in its end points) all zk.One 
omputesEij = Z t��0(t� 1)��n+1 nYk=1(t� zk � z0zn+1 � z0 )��kdt(integrate along the transformed path) so E is just an extension of the edgesinvariant under the stabilizer of 1 (linear transformations). From this integralrepresentation one dedu
es the following important lemma.Lemma 2.2 Let J � f0; 1; : : : ; n + 2g be su
h that 2 � #J � n + 1 and�J := Pj2J �j < 1. Let � denote the maximal stable partition 
ontainingJ . Then the Nilsson 
lass fun
tion F only has two di�erent exponents alongthe stratum D�. The several possibilities are listed below with their respe
tivemultipli
ities.J satis�es: n+ 2�#J times #J � 1 timesf0; n+ 1g 6� J � f0; : : : ; n+ 1g 0 1��Jf0; n+ 1g � J � f0; : : : ; n+ 1g 1� �n+2 2��J � �n+2n+ 2 2 J � f1; : : : ; n; n+ 2g �J � �n+2 1� �n+2None of the above �J � 1 0Proof: Compute this from the extended integral representation of the edges.2Corollary 2.1 For a stratum as in the previous lemma and q 2 D�, the limitlimz!q pev(z) exists and does not depend on lo
al monodromy near q. A smallneighborhood of q interse
ted with D� will be mapped into a subspa
e of dimen-sion #J � 1 of P(V 0) by this limiting pro
ess.Proof: Be
ause only evaluation upto some s
alar multiple is 
onsidered, theexponents along D� 
an be shifted to obtain an exponent 0 with multipli
ityn + 2 � #J and an exponent 1 � �J with multipli
ity #J � 1. The 
orollarynow follows from the fa
t that 1��J > 0.2For strata of 
odimension one we need the following stronger result.Theorem 2.6 Let q 2 [i j℄ for some (n � 1)-dimensional stratum [i j℄ of Q.There exists a neighborhood Qq of q, holomorphi
 fun
tions q0; : : : ; qn on Qqand homogeneous 
oordinates on P(V 0) su
h that(i) The set [q0 = 0℄ equals [i j℄ \Qq.26



(ii) The mapping Qq ! P(V 0), w 7! (q0(w) : : : : : qn(w)) is biholomorphi
.(iii) The proje
tive evaluation mapping pev on Qq is just(q0 : q1 : : : : : qn) 7! (q1��i��j0 : q1 : : : : : qn)Proof: A

ording to lemma 2.2 there exists a 
oordinate neighborhood(Qq; w1; : : : ; wn)of q and holomorphi
 fun
tions f0; : : : ; fn on Qq su
h that(i) The set [w1 = 0℄ equals [i j℄ \Qq.(ii) At ea
h point of Qq the fun
tionsf0 � w�1 ; f1 � w�1 ; : : : ; fn � w�1form a basis of determinations of F . Here � and � are the two exponentsalong [i j℄.Then with respe
t to suitable homogeneous 
oordinates of P(V 0) evaluation onQq is: pev : w 7! (w1��i��j1 f0 : f1 : : : : : fn)Now it is well known that the Wronskian of f0; : : : ; fn with respe
t to w1; : : : ; wnsatis�es a �rst order system of linear di�erential equations and from the expli
-itly known equations for the Lauri
ella fun
tion one dedu
es that the Wronskianhas the following form near q: h � w�+n��11Here h is a holomorphi
 fun
tion whi
h does not vanish at q. Expli
itly 
om-puting this wronskian using Cramer's rule, we �nd that both f0 anddet0BBBBBB� �f1�w1 : : : �f1�wn�f2�w1 : : : �f2�wn... ...�fn�w1 : : : �fn�wn
1CCCCCCAdo not vanish at q. By taking Qq small enough, the fun
tionsq0 := w1 � f1=(1��i��j)0 ; q1 := f1; : : : ; qn := fnsatisfy the 
onditions of the theorem. 227



2.5 Rami�ed 
overings of QIn this se
tion we will prove the following main result of these notes:Theorem 2.7 Suppose that for all strata [i j℄ of Q the exponent di�eren
e1 � �i � �j along [i j℄ equals 1=mij for some mij 2 N�2 . Then the image ofthe proje
tive evaluation mapping is dense in B and there exists a single valuedholomorphi
 mapping � : B ! Q su
h that on X one has � Æ pev = idX .We will prove this result by studying rami�ed 
overings of Q. A 
ru
ial in-gredient of the proof is the existen
e of a monodromy invariant metri
 d on Bgenerating its topology. This is the so-
alled Poin
ar�e-Bergman metri
 de�nedas follows.De�nition 2.2 De�ne a metri
 d on B by:
osh d([v1℄; [v2℄) = jH(v1; v2)j[H(v1; v1)H(v2; v2)℄1=2For any � > 0 denote the ball of radius � 
entered at b 2 B by B(�; b):B(�; b) := fb0 2 B j d(b0; b) < �gThis metri
 is 
learly monodromy invariant, and it generates the topology ofB. Let � : eX ! X be the universal 
overing of X . Lift pev to a (single-valued) lo
ally biholomorphi
 map pev on eX. Then Aut( eXjX) is isomorphi
 to�1(X; zo).Theorem 2.8 Suppose q 2 D� and for all strata [i j℄ 
ontaining q in their
losure the exponent di�eren
e 1 � �i � �j equals 1=mij for some mij 2 N�2 .Let ��(�) : X�(�) ! X be the universally rami�ed 
overing of X rami�ed oforder mij along [i j℄. So any mij-fold loop around [i j℄ indu
es the identityautomorphism of X�(�) and X�(�) is universal with respe
t to this property.Then the 
overing X�(�) embeds in a rami�ed 
overing�(�) : X(�)! [�0��D�0i.e. X�(�) is a submanifold of X(�) and ��(�) is the restri
tion of �(�) toX�(�). Moreover, pev indu
es a lo
ally biholomorphi
 mapping on X(�), alsodenoted by pev.Proof: From theorem 2.6 it follows that the evaluation mapping is invariantunder analyti
 
ontinuation along any mij -fold loop around [i j℄. Hen
e pev28



des
ends to a lo
ally biholomorphi
 mapping pev on X�(�). The proof nowpro
eeds by indu
tion on the dimension n. In dimension one this embedding of
overings is just the remark that C � zm! C �extends to a mapping of C onto C . Let w 2 D�0 for some stable �0 � �. Letp1; : : : ; ps 2 �0 be the parts 
ontaining at least two elements. Then there arelo
al 
oordinatesw01 ; : : : ; w0#�0�3; w11 ; : : : ; w1#p1�1; w21; : : : ; w2#p2�1; : : : ; ws#ps�1on the polydis
 jwmj j < 1 
entered at w su
h that the strata in this polydis
 aredes
ribed as the interse
tion stru
ture of the hyper planes:Xk�j�lwmj = 0Here m ranges over f1; : : : ; sg and and k; l over all values su
h that 1 � k � l �#pm � 1. Let �m denote the mth \
oordinate sli
e", i.e. the set of points ofwhi
h only the wm� 
oordinates are non-zero. Then the polydis
 neighborhoodof w is a produ
t �sj=0�jMoreover, the strati�
ation is 
ompatible with this produ
t, i.e. strata areprodu
ts of their proje
tions on the 
oordinate sli
es. Every sli
e �p withits strati�
ation is isomorphi
 to a polydis
 neighborhood on some geometri
quotient Qp of dimension #p � 1 (in
luding strati�
ations). For example take�j for j 2 p and twi
e 1� 12 Pj2p �j as the new #p+ 2 parameters.If no set in � has n+1 elements, then for all points w as above the fa
tors of su
hprodu
ts have lower dimension than Q. This allows an indu
tive pro
edure inthis 
ase. Let U be a polydis
 neighborhood of w as before, then the universallyrami�ed 
overing of U \X embeds in a rami�ed 
overing of U , and pev extendslo
ally biholomorphi
ally over this rami�ed 
overing. (Be
ause U \X is just aprodu
t of lower dimensional situations). The only automorphism of this lo
alrami�ed 
overing over U that �xes pev is the trivial automorphism be
ausepev is lo
ally biholomorphi
 everywhere and the pre-image of w in the 
overingis �xed by any automorphism. This implies that the quotient map of thisuniversally rami�ed 
overing of U \ X to the 
overing X�(�) is a
tually anembedding. So all lo
al extensions �t together and we 
on
lude that X�(�)embeds in a 
overing X(�) as stated.By theorem 2.6 the evaluation mapping extends to a lo
ally biholomorphi
 map-ping on all points ofX(�) above 
o-dimension one strata. Then by Hartog's the-orem the evaluation mapping extends lo
ally biholomorphi
ally to all of X(�).29



The 
ase remains that � 
ontains a set of n + 1 elements (i.e. fqg is itself astratum). By reasoning in the same way as before, we 
on
lude that X�(�)embeds in a rami�ed 
overing�� : X�(�)! [�0>�D�0and evaluation extends lo
ally biholomorphi
ally to this 
overing. We have toshow that it extends over the point q. Let Qq be a small ball neighborhood ofq and Q� a 
onne
ted 
omponent of (��)�1(Qq).By 
orollary 2.1 on Q� the limit lim��(w)!q pev(w) =: b is a well de�ned pointin B, in parti
ular, it is �xed by lo
al monodromy near q. Let K � Qq be a
ompa
t ball around q su
h that for any w 2 Q� \ (��)�1(�K) the distan
ed(pev(w); b) is at least 2Æ > 0. Su
h a K exists be
ause pev is lo
ally biholo-morphi
 and this distan
e is invariant under the automorphisms of Q� j Qq.We will show that pev maps some open subset of K� := (��)�1(K) biholomor-phi
ally onto the pun
tured ball B(Æ; b) � fbg. Then by Hartog �� Æ (pev)�1extends over b whi
h shows that X�(�) indeed embeds in a 
overing X(�) asstated.Take a 
overing sequen
e of 
ompa
t subsets of K � fqgK1 �� K2 �� : : :i.e. for all j, Kj is 
ontained in the interior of Kj+1 and [fKj j j � 1g =K � fqg. If � > 0 a point w 2 Q� will be 
alled �-wide if pev maps someneighborhood of w biholomorphi
ally onto the ball B(�; pev(w)).Lemma 2.3 For ea
h j � 1 there exists an �j > 0 su
h that any point w 2K�j := (��)�1(Kj) is �j-wide.Proof: Consider for all N � 1 the setWN = fw 2 j w is �-wide for some � > 1=ng:The following properties hold for these sets:(i) WN is an open set for all N .(ii) If N �M then WN �WM .(iii) Ea
h WN is Aut(Q�jQq) stable.(iv) [fWN j N � 1g = Q�.Property (iii) follows by invarian
e of the distan
e d on B and (iv) followsbe
ause pev is lo
ally biholomorphi
. Now all Kj are 
ompa
t and hen
e there30



exist integers 1 � N1 � N2 � : : : su
h that K�j � WNj for all j. This impliesthat all w 2 K�j are 1=Nj-wide. 2Let bo = pev(w) be in B(Æ; b) for some w 2 Q�. Lo
ally near bo the mappingpev has a holomorphi
 inverse  . Let 
 : [0; 1℄ ! B(Æ; b) � fbg be any 
urvein the pun
tured ball su
h that 
(0) = bo. Suppose that  
an be 
ontinuedanalyti
ally along 
 upto (but not ne
essarily in
luding) 
(t) for some t 2 (0; 1℄.Then  maps into K� be
ause its image 
annot 
ross �K�. If  Æ 
(t0) 2 K�jfor some t0 2 (0; t) su
h that d(
(t0); 
(t)) � �j then by the wideness lemma,  
an be 
ontinued upto and in
luding 
(t). Now this is always the 
ase for theonly other possibility is that �� Æ Æ
 tends to q if t0 tends to t. But this wouldimply that 
(t) = b whi
h we assumed not to be the 
ase.Now b is of 
o-dimension at least two in B(Æ; b) so �� Æ extends to a holomor-phi
 mapping on B(Æ; b) by simply-
onne
tedness of B(Æ; b)� fbg and Hartog'stheorem. This mapping extends the 
overing �� over q, proving the existen
eof an embedding of X�(�) in X(�) as stated and pev extends lo
ally biholo-morphi
ally. 2(theorem 2.8)The main theorem follows from theorem 2.8:Proof: (Of theorem 2.7). Suppose that for all strata [i j℄ the exponent di�er-en
e 1��i��j equals 1=mij for some mij 2 N�2 . Let ��(m) : X�(m)! X bethe universally rami�ed 
overing with rami�
ation order mij along [i j℄. Thenpev des
ends to a lo
ally biholomorphi
 mapping pev on X�(m) be
ause it isinvariant under 
ontinuation along any mij fold loop around [i j℄.For any q 2 D� a 
onne
ted 
omponent of (��)�1(Qq) for some neighborhoodQq is isomorphi
 to a 
onne
ted 
omponent of X�(�) over Qq be
ause pev isinvariant under the trivial automorphism of su
h a 
omponent only (by theorem2.8). This implies that X�(m) embeds in a rami�ed 
overing �(m) : X(m)! Qin the same sense as before.The (quasi proje
tive) variety Q has a natural (proje
tive) 
ompa
ti�
ation Q(the universal 
ategori
al quotient (P1)n+3semistable=PGL(C 2 )). The 
omplementQ�Q 
onsists of a �nite number of (singular) points and if q ! Q�Q then pev(q)will tend arbitrarily far away from any point in B (with respe
t to the metri
 d).One 
an 
ompute this simply using the integral representations of edges or seethe dis
ussion in [DM℄. Now a wideness argument applied to X(m) j Q as beforeshows that any lo
al holomorphi
 inverse of pev extends to a global inverse onB. Moreover pev establishes an isomorphism between (X(m);Aut(X(m)jQ))and (B;M(�1(X; zo))).2 31



2.6 Some additional resultsThe main theorem dis
ussed here is not the end of the story. Suppose that forsome i; j equality �i = �j holds. Then inter
hanging 
oordinates i and j on(P1)n+3 (numbered 0; : : : ; n + 2) indu
es a transformation of Q. The Nilsson
lass fun
tion F of edges is invariant under this transformation. So we havea subgroup � of the symmetri
 group Sn+3 a
ting on Q and stabilizing F .This allows one to 
onsider the indu
ed system F on the quotient �nQ. Theupshot of this is that the exponent along a 
orresponding stratum [i j℄ will be(1� �i � �j)=2 and in fa
t the more general theorem be
omes:Theorem 2.9 Suppose that for all strata [i j℄ the exponent di�eren
e 1��i��jis either 1=mij (if �i 6= �j) or 2=mij (if �i = �j) then the evaluation mappingpev on �nQ has a holomorphi
 inverse on B.Unfortunately, this quotient will in general be singular be
ause � does not evenhave to a
t free on X . So one has to take 
are of additional details to deal withthis, essentially without 
hanging the idea of the proof of su
h a theorem (see[M℄). In fa
t, would this quotient be smooth, then the same proof as dis
ussedin these notes would apply. I omitted this additional theory for the sake ofkeeping things more transparant.A se
ond important remark is that one 
an repla
e the 
ondition that �j 2 (0; 1)for all j by the 
ondition �j > 0 for all j. This would add the ellipti
 andparaboli
 
ases to our theory (if for some j, �j > 1 or �j = 1 respe
tively).One 
an again prove the above theorem for these 
ases. (Now Q will just beproje
tive spa
e Pn). Though in addition to dis
ussing symmetries �, one hasto do some extra work to infer invariant forms for the monodromy (whi
h willbe de�nite and semi-de�nite respe
tively).In the ellipti
 
ase, the monodromy is �nite, implying that Lauri
ella's FD isalgebrai
. A holomorphi
 inverse for pev then exists throughout P(V 0). In theparaboli
 (sometimes 
alled eu
lidean) 
ase monodromy a
ts by aÆne transfor-mations. A holomorphi
 inverse for pev then exists on a aÆne spa
e in P(V 0).In this paraboli
 
ase the 
onstant fun
tions always satisfy the equations of FD !Some work was done on these ellipti
 and paraboli
 
ases, though by di�erentmeans. The question investigated is if monodromy is dis
rete, not if an inverseof the evaluation exists. For example see [Sa℄, [CW℄. Cohen and Wolfart usearithmeti
 properties of monodromy to dedu
e �niteness or dis
reteness (in theeu
lidean 
ase).It is an interesting remark that in the paraboli
 
ases, the quotient �nQ isalways a weighted proje
tive spa
e. Hen
e some positive results are obtainedfor the 
onje
ture in [BS℄ that the quotient of an aÆne spa
e with respe
t toa dis
rete 
o
ompa
t a
tion of a group generated by re
e
tions will always beweighted proje
tive spa
e. The weights are essentially just the degrees of the32



irredu
ible fa
tors of �. Here is a list of the paraboli
 
ases:n denominator numerators weights2 4 4 1 1 1 1 2 3 46 6 2 2 1 1 1 2 26 6 3 1 1 1 1 2 33 6 6 2 1 1 1 1 1 2 3 44 6 6 1 1 1 1 1 1 2 3 4 5 6The next se
tion shows a list of all 102 
ases in whi
h evaluation has a globallyholomorphi
 inverse.
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2.7 Tablesn = 2# den. Numerators1 3 2 1 1 1 12 4 2 2 2 1 13 4 3 2 1 1 14 4 4 1 1 1 15 5 2 2 2 2 26 6 3 3 2 2 27 6 3 3 3 2 18 6 4 3 2 2 19 6 4 3 3 1 110 6 4 4 2 1 111 6 5 2 2 2 112 6 5 3 2 1 113 6 5 4 1 1 114 6 6 2 2 1 115 6 6 3 1 1 116 6 7 2 1 1 117 6 8 1 1 1 118 8 4 3 3 3 319 8 5 5 2 2 220 8 6 3 3 3 121 9 4 4 4 4 222 10 6 5 3 3 323 10 6 6 3 3 224 10 7 4 4 4 125 10 8 3 3 3 326 10 9 3 3 3 227 12 5 5 5 5 428 12 6 5 5 4 429 12 6 5 5 5 330 12 7 5 4 4 431 12 7 6 5 3 332 12 7 7 4 4 233 12 7 7 6 2 234 12 8 5 5 3 335 12 8 5 5 5 136 12 8 7 3 3 337 12 9 7 4 2 238 12 9 9 2 2 239 12 10 5 3 3 340 12 11 7 2 2 2 34



41 14 8 5 5 5 542 14 11 5 5 5 243 15 8 6 6 6 444 18 8 7 7 7 745 18 10 7 7 7 546 18 10 10 7 7 247 18 11 8 8 8 148 18 13 7 7 7 249 18 14 13 3 3 350 20 10 9 9 6 651 20 13 9 6 6 652 20 14 11 5 5 553 24 14 9 9 9 754 24 19 17 4 4 455 30 22 11 9 9 956 30 23 22 5 5 557 30 26 19 5 5 558 42 26 15 15 15 1359 42 34 29 7 7 7n = 3# den. Numerators1 3 1 1 1 1 1 12 4 2 2 1 1 1 13 4 3 1 1 1 1 14 6 3 2 2 2 2 15 6 3 3 2 2 1 16 6 3 3 3 1 1 17 6 4 2 2 2 1 18 6 4 3 2 1 1 19 6 4 4 1 1 1 110 6 5 2 2 1 1 111 6 5 3 1 1 1 112 6 6 2 1 1 1 113 6 7 1 1 1 1 114 8 3 3 3 3 3 115 10 5 3 3 3 3 316 10 6 3 3 3 3 217 12 5 5 5 3 3 318 12 7 5 3 3 3 319 12 7 7 4 2 2 220 12 9 7 2 2 2 2 35



n = 4# den. Numerators1 4 2 1 1 1 1 1 12 6 2 2 2 2 2 1 13 6 3 2 2 2 1 1 14 6 3 3 2 1 1 1 15 6 4 2 2 1 1 1 16 6 4 3 1 1 1 1 17 6 5 2 1 1 1 1 18 6 6 1 1 1 1 1 19 10 3 3 3 3 3 3 210 12 7 7 2 2 2 2 2n = 5# den. Numerators1 4 1 1 1 1 1 1 1 12 6 2 2 2 2 1 1 1 13 6 3 2 2 1 1 1 1 14 6 3 3 1 1 1 1 1 15 6 4 2 1 1 1 1 1 16 6 5 1 1 1 1 1 1 1n = 6# den. Numerators1 6 2 2 2 1 1 1 1 1 12 6 3 2 1 1 1 1 1 1 13 6 4 1 1 1 1 1 1 1 1n = 7# den. Numerators1 6 2 2 1 1 1 1 1 1 1 12 6 3 1 1 1 1 1 1 1 1 1n = 8# den. Numerators1 6 2 1 1 1 1 1 1 1 1 1 136
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Chapter 3Re
e
tion groups
3.1 Introdu
tionThe investigations that lead to the results in this 
hapter were mainly motivatedby the following three things:1. The intriguing paper by Orlik and Solomon [OS℄ in whi
h they study(using a 
omputer) the invariants of Shephard groups. They show thatthe generating homogeneous invariants 
an be 
hosen in su
h a way thattheir dis
riminant is the same as that of a related real re
e
tion group.2. The paper by Deligne and Mostow [DM℄. In this paper they 
onstru
tgroups of transformations of a 
omplex ball generated by re
e
tions thata
t dis
retely. These groups arise as a monodromy group of a hypergeo-metri
 fun
tion in several variables (a Lauri
ella FD).3. The work of He
kman and Opdam on hypergeometri
 fun
tions and Besselfun
tions asso
iated to (
rystallographi
) root systems as in [H℄, [O℄ andother papers.The goal was to understand the results of Orlik and Solomon in an intrinsi
way as follows. Start with the 
omplement of a dis
riminant of a �nite realre
e
tion group W and try to 
onstru
t the 
omplex groups as monodromygroups of 
ertain spe
ial fun
tions asso
iated to the root system of W .This turns out to be a produ
tive idea. The 
omplex groups arise this way by\altering" the orders of the generating re
e
tions of W . We 
all these groupstrun
ated braid groups. These fall into three 
ategories: the �nite, the paraboli
and the hyperboli
 groups. For ea
h of these 
ategories the results in
lude:39



1. Geometri
 information about rami�ed 
overings of dis
riminant 
omple-ments.2. Presentations for the 
omplex (not ne
essarily �nite) groups.3. Chevalley like theorems on the invariants of these groups.The results of [OS℄ and of Coxeter [C℄ (on presentations of �nite 
omplex re-
e
tion groups) are 
onsequen
es of the theory for the �nite 
ase.The results in the paraboli
 
ase 
an be related to results of Looijenga [L℄ andBernstein S
hwarzman [BS℄. In [BS℄ it is 
onje
tured that if a group generatedby 
omplex re
e
tions of an aÆne spa
e a
ts dis
retely and 
o
ompa
tly thequotient spa
e is always weighted proje
tive. Indeed, in our examples the quo-tient is weighted proje
tive and the weights are dire
tly related to the degrees ofthe real Coxeter group. As in [L℄ a Chevalley like theorem is proved for 
ertainrings of theta fun
tions.The hyperboli
 
ase gives more examples of dis
rete groups a
ting on a 
omplexball of whi
h the quotient (and other things) 
an be des
ribed expli
itly. Tworemarks should be made. Firstly there is a non zero interse
tion between thispaper and [DM℄. The theory for 
lassi
al root systems 
an be translated to thetheory of Lauri
ella's FD. Details will appear in a seperate arti
le. Se
ondly,at the moment not all hyperboli
 
ases are treated in all detail. For severalgroups the ball quotient will no longer be a weighted proje
tive spa
e. Thealgebrai
 
onstru
tion of these quotients similar to Geometri
 Invariant Theoryis only sket
hy on some points. Results upto this point are dis
ussed in the next
hapter.The results for n = 2 are (more or less) analogous to those of Milnor in [N℄ on
overing spa
es of Pham-Brieskorn varieties.The rough plans for the development of the theory were laid out by G. He
kman.I would like to thank him for his enormous support. I would also like to thankE. Looijenga, J. Steenbrink and H. de Vries for several interesting dis
ussionsand reading of the manus
ript.3.2 Coxeter groups, braid groups and re
e
tionrepresentationsFirst we introdu
e some 
on
epts from the theory of root systems and re
e
tiongroups Let (E; (�; �)) be an Eu
lidean ve
tor spa
e, dim(E) = n. Let V be its
omplexi�
ation, V = C 
E. Extend (�; �) to a bilinear form on V . Let R � Ebe a normalized rootsystem of full rank, i.e. a �nite set su
h that:1. (�; �) = 2 for all � 2 R. 40



2. s�(�) := � � (�; �)� 2 R for all �; � 2 R.3. SpanR(R) = E.If in addition the following holds4. If R = R1[R2 and (�1; �2) = 0 for all �1 2 R1 and �2 2 R2, then R1 = ;or R2 = ;then we 
all R irredu
ible. For any � 2 R we denote its dual in V � by ��, i.e.��(v) = (�; v) for any v 2 V . De�ne the regular points in V by:V reg = fv 2 V j (�; v) 6= 0; all � 2 RgTake a set of positive roots R+, R = R+ [�R+ and simple roots �1; : : : ; �n 2R+. Denote the positive 
hamber in E by E+:E+ = fv 2 E j (v; �i) > 0 for all i 2 f1; : : : ; nggDenote the group generated by all re
e
tions s�, � 2 R by W :W = hs� j � 2 Ri = hs�1 ; : : : ; s�niDenote the fundamental \weights" by �1; : : : ; �n, i.e. (�i; �j) = Æij . De�ne theCoxeter integers mij by: mij = order(s�is�j )Then for i 6= j: (�i; �j) = �2 
os( �mij )We denote the Coxeter element s�1s�2 � � � s�n of W by 
, and the Coxeter num-ber of W by h, i.e. order(
) = h. If R is irredu
ible the exponents of W arewritten m1; : : : ;mn.The matrixM = (mij) is 
alled the Coxeter matrix of R. Su
h a matrix 
an bedenoted graphi
ally as follows. Take n verti
es v1; : : : ; vn. Whenever mij > 2for some i 6= j, 
onne
t vi and vj by an edge, moreover, if mij > 3 write thisnumber along the edge. We will identify the diagram and the matrix, so we
an speak of a Coxeter diagram M with Coxeter integers mij , et
. Next weintrodu
e a braid group asso
iated to M .De�nition 3.1 For a; b in some group or algebra and m 2 N, we de�ne (a; b)mby: (a; b)m = (ab)m2 if m is even(a; b)m = (a; b)m�1 � a if m is odd41



The braid group B(M) asso
iated with the Coxeter diagram M is the groupde�ned by generators and relations as follows:B(M) = hg1; : : : ; gnj(gi; gj)mij = (gj ; gi)mji ; 1 � i < j � niThe element g1g2 � � � gn is 
alled a Coxeter element in B(M).Lemma 3.1 Take i; j 2 f1; : : : ; ng and i 6= j. The following statements areequivalent:1. The two generators gi and gj in B(M) are 
onjugate.2. The verti
es vi and vj are still 
onne
ted in the diagram M if we erase alledges along whi
h there is an even number.3. The simple roots �i and �j are in the same W -orbit.Proof: Equivalen
e of 1 and 2 is proved as in [B, Ch. IV, x1, prop. 3℄ (TakeS = fg1; : : : ; gng and use mij instead of the order of gigj). Now �i and �j arein the same W -orbit if and only if s�i and s�j are 
onjugate whi
h is equivalentto 2 by the same proposition. 2The following stru
ture theorems of Chevalley and Brieskorn are of fundamentalimportan
e:Theorem 3.1 (Chevalley) The algebra of W -invariant polynomials on V isitself a polynomial algebra, i.e.:P [V ℄W �= C [P1 ; : : : ; Pn℄Here P1; : : : ; Pn are homogeneous of degree di := mi+1 and satisfy no algebrai
relation. The orbit-spa
e WnV is therefore isomorphi
 to an aÆne spa
e [Ch℄.De�nition 3.2 The polynomial D 2 C [X1 ; : : : ; Xn℄ given byD(P1; : : : ; Pn) = Y�>0(��)2is 
alled the dis
riminant of R. The zero lo
us [D = 0℄ is denoted by �. The
omplement of � in C n is denoted by X.The proje
tion P : V ! C n ; P : v 7! (P1(v); : : : ; Pn(v))is a rami�ed 
overing of degree jW j with bran
h lo
us �. The automorphismgroup of this 
overing is exa
tly W .The C � -a
tion on the ve
torspa
e V indu
es a C � -a
tion on C n :42



De�nition 3.3 Let z = g
d(d1; d2; : : : ; dn) be the order of the 
enter of W ,(i.e. z 2 f1; 2g). De�ne a C � -a
tion by:y � (x1; x2; : : : ; xn) = (yd1x1; yd2x2; : : : ; ydnxn); any y 2 C �The quotient C �n(C nnf0g) will be denoted by Pd(C n ). It is 
alled a weightedproje
tive spa
e with weights dj=z.Note that P (y � v) = y � P (v) for any y 2 C � and v 2 V , so the a
tion restri
tsto an a
tion on X .De�nition 3.4 Let I � f1; 2; : : : ; ng have m elements. The subsetfP (v) j v 2 V; (�i; v) = 0 i� i 2 Igof � is 
alled a (n � m)-dimensional fa
et and if I = fig a type i re
e
tionplane. The union of all (n�1)-dimensional fa
ets is 
alled the set of subregularpoints.Theorem 3.2 (Brieskorn) Pi
k a basepoint xo 2 E+, and write yo = P (xo).The fundamental group �1(X; yo) is isomorphi
 to B(M). Moreover, if we de�neloops Gj by Gj : [0; 1℄! X; Gj(t) = P (xo + e�it � 12 (xo; �j)�j)then the homotopy 
lasses of these loops generate the fundamental group andthe map Gj 7! gj extends to an isomorphism.Remark 3.1 If Y : [0; 1℄! X is given byY (t) = P (e 2�itz xo)then Y is homotopi
 to (G1G2 � � �Gn)h=z. In parti
ular the latter element is
entral in the fundamental group. Moreover it even generates the 
enter [D1℄.We will now introdu
e marked Coxeter diagrams and trun
ated braid groups.De�nition 3.5 A marked Coxeter diagram is a Coxeter diagram M as beforetogether with n integers p1; : : : ; pn all at least 2 su
h that pi = pj if the verti
esvi and vj are 
onne
ted in the mod 2 redu
ed diagram M . A marked diagram isgraphi
ally denoted by atta
hing the number pi to the vertex vi if pi > 2.From now on, we will write (M;p1; : : : ; pn) or simply (M;p), when referring toa marked diagram. 43



De�nition 3.6 The trun
ated braid group B(M;p) asso
iated to a marked di-agram (M;p) is a group given by generators and relations as follows:B(M;p) = hg1; : : : ; gnj(gi; gj)mij = (gj ; gi)mji ; gpii = e; 1 � i � j � niWe now 
onstru
t a holomorphi
 family of representations of the braid groupB(M), the so-
alled re
e
tion representation. Throughout these notes, �m de-notes the primitive root of unity exp(2�i=m).De�nition 3.7 A multipli
ity parameter k : R! C is a map whi
h is 
onstanton W -orbits in R. We denote the spa
e of all multipli
ity fun
tions by K. Fork 2 K we will sometimes write ki instead of k�i .As a C -ve
tor spa
e, K is isomorphi
 to C t if t is the number of W -orbits in R(i.e. t 2 f1; 2g).De�nition 3.8 The restri
ted multipli
ity parameters are de�ned by:K 0 = fk 2 K j 0 < Re(ki) < 12 ; for all ig[fk 2 K j � 14 < Re(ki) < 14 ; for all igThen for all k 2 K 0 and i; j su
h that mij > 2:Re(2(
os�(ki � kj) + 
os 2�mij )) > 0We de�ne holomorphi
 fun
tions on K 0 by:qj = exp(�2�ikj); for all jhij =8><>: q1=2j + q�1=2j If i = j0 If i 6= j and mij = 2�(2(
os�(ki � kj) + 
os 2�mij ))1=2 If i 6= j and mij > 2Here we take 11=2 = 1.Observe that hij(k) 6= 0 if mij > 2 for all k 2 K 0. We will denote the 
anoni
albasis of Cm by e1; : : : ; em.De�nition 3.9 Let for all i, the matrix ri 2 Mat(n;O(K 0)) be given by:(ri)mj = Æmj � Æmiq1=2i hij44



Theorem 3.3 The map % : fg1; : : : ; gng ! Mat(n;O(K 0)) mapping gi to riextends to a anti-homomorphism on B(M), i.e. a map % su
h that %(g1g2) =%(g2)%(g1). Moreover, if k 2 K 0 is real-valued, then the matrix H = (hij) isreal-valued at k, symmetri
 and satis�es:ht%(g)H%(g)i (k) = H(k); all g 2 B(M)Proof: As in [CIK, 9.1 & 9.3℄ if one takes B(�r; �s) = hrs and ur = q�1r . 2Note that for any k 2 K 0 the spe
ialisation %(k) is a right representation onC n . The matrix ri(k) is a 
omplex re
e
tion with spe
ial eigenvalue �qi(k). Ifk 2 K 0 is real-valued then ri(k) is unitary with respe
t to H(k). Note that if weset ki = 0 for all i, we just get the geometri
 right representation of a Coxetergroup (w.r.t. a basis of simple roots), in parti
ular H(0) = ((�i; �j)).Remark 3.2 Suppose we are given two 
omplex re
e
tions a1, a2 in C 2 :ai(ej) = ej + sijeiIf these re
e
tions satisfy a braid relation of m fa
tors then one 
an prove thats12s21 = q1 + q2 + (� + ��1)q1=21 q1=22where qi = �(1 + sii) and � is a mth root of unity. Now suppose our Coxeterdiagram M is a tree. Then the homomorphism % is up to 
onjugation the uniqueone su
h that1. For any k 2 K 0, and any 1 � i � n, the spe
ialisation %(k)(gi) is a
omplex re
e
tion.2. The spe
ial eigenve
tors of %(k)(gi), i = 1; : : : ; n span C n .3. The spe
ialisation %(0) is the real re
e
tion representation.One 
an prove this by indu
tion on n. Consider an extremal node from thediagram. This extremal node is 
onne
ted to exa
tly one other node of thediagram. This redu
es the proof to a rank two situation and there one uses thefa
t that s12s21 6= 0.De�nition 3.10 If (M;p) is a marked diagram, and we take k 2 K 0 su
h thatki = 1=2� 1=pi for all i we de�ne the matrix group G(M;p) byG(M;p) = hri(k) j 1 � i � niThe map gi 7! ri(k) extends to a homomorphism on B(M;p). We 
all G(M;p)the geometri
 realisation of B(M;p). 45



We now suppose that M is 
onne
ted and 
onsists of at least two verti
es.Theorem 3.4 De�ne k = (k1 + : : :+ kn)=n and q = exp(�2�ik). Denote theCoxeter element %(g1g2 � � � gn) by 
q. The 
hara
teristi
 polynomial of 
q(k) isgiven by: P
q(k)(T ) = nYj=1(T � q�mjh )Proof: By remark 3.1 we know that 
q(k)h 
ommutes with r1(k); : : : ; rn(k).This implies that it is diagonal w.r.t. the basis e1; : : : ; en. If mij > 2 thena 
omputation shows that the diagonal entries on the pla
es i and j must beequal. This implies that 
q(k)h is in fa
t a s
alar times the identity be
ause Mis 
onne
ted. Say 
q(k)h = � �1n, then by taking determinants we see qnh = �n,so � = �mn qh for some m. Setting ki = 0 for all i, shows in fa
t that � = qh. Soall eigenvalues of 
q(k) are of the form �mh q. Again 
onsidering ki = 0 �nallyproves the theorem. 2Corollary 3.1 If k 2 K 0 then %(k) is a redu
ible representation of B(M) i�q = �mjh for some j. Moreover, if it is redu
ible then the only non trivialinvariant subspa
e of C n is one dimensional.Proof: Be
ause hij 6= 0 if mij > 2 a non trivial invariant subspa
e of C n mustbe kept pointwise �xed by generators rj(k). In parti
ular the Coxeter element
q(k) must have an eigenvalue 1. This is the 
ase i� q = �mjh for some j. Onthe other hand, any eigenve
tor of 
q(k) with eigenvalue 1 is kept �xed by allre
e
tions rj(k). This proves the 
orollary. 2We now 
onsider Coxeter elements asso
iated with subdiagrams of M . Let Ibe some subset of f1; : : : ; ng su
h that the subdiagram M 0 of M spanned bythe verti
es vi, i 2 I is 
onne
ted. If #I = m, I = fi1; : : : ; img then let
Iq = %(gi1 � � � gim)Theorem 3.5 If k 2 K 0 is su
h that %(k) is irredu
ible and 
Iq(k) has a nonzero �xed point in the subspa
eCI := SpanC fei1 ; : : : ; eimg � C nthen 
Iq(k) is not semisimple. If 
Iq(k) = S +N is its Jordan de
omposition ina semisimple and nilpotent part respe
tively, then rank(N) = 1.Proof: Be
ause %(k) is irredu
ible the �xed point set of the endomorphism
Iq(k) is a linear subspa
e of dimension n�m (indeed 
q(k) has no non-zero �xedpoint). But by our assumption the �xed point set interse
ts CI non trivially46



(and hen
e in a one dimensional subspa
e by theorem 4). Now 
Iq(k) restri
tedto the n� 1 dimensional spa
eCI + Fixed pointsis semisimple. Clearly 1�
Iq(k) maps C n into CI so 
Iq(k) itself is not semisimple.This proves the theorem. 2For real valued k 2 K 0 we now 
ompute the signature of the invariant Hermiteanform.Theorem 3.6 Let the matrix H be de�ned as above. The determinant of H isgiven by: det(H) = 2n nYi=1(
os�k + 
os mi�h )Proof: Due to Coxeter [C2℄. From an exer
ise in Bourbaki ([B℄, Ch. V, x6,exer
. 3,4) we know that: det(H) = q�n=2det(1� 
q)Using theorem 4 we obtain:det(H) = nYj=1(q�1=2 � q1=2�mjh ) == nYj=1(q�1=4 � q1=4�mj2h )(q�1=4 + q1=4�mj2h ) == nYj=1(q�1=4 + q1=4��mj2h )(q�1=4 + q1=4�mj2h ) == nYj=1(q�1=2 + q1=2 + �mj2h + ��mj2h ) = 2n nYj=1(
os�k + 
osmj�h )Here we used the fa
t that mj +mn+1�j = h. 2Corollary 3.2 If k 2 K is real valued and 0 � kj < 1=2 for all j then H(k) is1. positive de�nite i� 0 < 1� hk � 1.2. paraboli
 (i.e. positive semi de�nite with one-dimensional kernel) i� 1�hk = 0.3. hyperboli
 (i.e. has signature (n� 1; 1)) i� 1�m2 < 1� hk < 0.47



Proof: Again from the same exer
ises in [B℄ one 
an dedu
e that, in 
aseki = k all i, the eigenvalues of H are exa
tly 2(
os�k � 
os mj�h ). So in this
ase the signature of H 
an be read o� as indi
ated. However, we know thatthe determinant of H does only depend on k. Hen
e the signature of H doesnot 
hange if we vary ki in su
h a way that k remains 
onstant. This proves the
orollary. 2De�nition 3.11 If (M;p) is a 
onne
ted marked diagram and k 2 K 0 is su
hthat ki = 1=2� 1=pi, we 
all �(k) = 1� hkthe exponent of the marked diagram.By using the well known property ([B℄) that the 
y
li
 group generated by theCoxeter element 
 of W has n orbits of length h on the roots R one dedu
es:�(k) = 1� 1n X�2R k�De�nition 3.12 We denote the transpose of % by %�, i.e.:%�(g) = t%(g); g 2 B(M)In parti
ular for any k 2 K, %�(k) is a (left) representation of B(M). LetH� 2 Mat(n;O(K 0)) be given by:H� = det(H)H�1(This is well de�ned, moreover this is just the minor matrix of H).Theorem 3.7 If k 2 K 0 is realvalued, then H�(k) is a non-trivial invariantHermitian form for the transpose %�(k) at k. Moreover, if H(k) is positivede�nite, then H�(k) is also positive de�nite. If H(k) is paraboli
, then H�(k) ispositive semi-de�nite, and has an n�1 dimensional kernel. If H(k) is hyperboli
,then te signature of H�(k) is (1; n� 1).Proof: Be
ause H(k) is at least of rank n� 1, the matrix H�(k) is at least ofrank one. Then H�(k) is 
learly a non-trivial Hermitian form for %�(k). Thestatements for the ellipti
 and hyperboli
 
ases are 
lear. If H(k) is paraboli
,the statement follows from the equality H(k)H�(k) = 0. 2To end this se
tion we 
onstru
t the logarithmi
 re
e
tion representation ofB(M). Let k 2 K 0 be su
h that �(k) = 0. Then %(k) has a non-zero �xedpoint in C n unique upto s
alar multiples. Let �j = %(k; gj+1 � � � gn)ej for j 248



f1; : : : ; ng. Let xj 2 C be su
h that � := Pj xj�j is a non-zero �xed point of%(k). De�ne endomorphisms ~r1(k); : : : ; ~rn(k) of C n+1 by~ri(k)ej = � ri(k)ej If j � nen+1 + xiei If j = n+ 1Then the map ~%(k) : B(M) ! End(C n+1 ), ~%(k; gj) := ~rj(k) extends to aright representation of B(M) 
alled the logarithmi
 re
e
tion representation.One 
he
ks that ~%(k; g1 � � � gn)en+1 = en+1 + � and hen
e ~%(k; g1 � � � gn) has anilpotent part of rank one.Lemma 3.2 The only non trivial invariant subspa
es of the logarithmi
 re
e
-tion representation are C � and SpanC fe1; : : : ; eng. Here � denotes a �xed ve
tor(unique upto a s
alar).Proof: The logarithmi
 representation restri
ted to A := SpanC fe1; : : : ; eng isequivalent to the re
e
tion representation. Hen
e the only invariant subspa
es
ontained in A are f0g, C � and A. If B is a non-trivial invariant subspa
enot 
ontained in A, then B \ A is at most one dimensional. hen
e B is atmost two dimensional and 
ontains a ve
tor of the form en+1 + a, a 2 A. Theendomorphism 1 � ~%(k; gj) maps B into B \ C ej = f0g. Hen
e B must bekept pointwise �xed by the logarithmi
 representation. However, let the 
entralelement a
t on en+1 + a 2 B to obtain~%(k; (g1 � � � gn)h)(en+1 + a) = en+1 + a+ x�for some non zero x 2 C . This shows that every non trivial invariant subspa
eis 
ontained in A. 23.3 The Dunkl 
onne
tionNotations as in the previous se
tion. We will assume that the root system R isirredu
ible and of full rank in E. Let (k� j � 2 R) be aW -invariant multipli
ityparameter on the roots. Let � : W ! End(H) be a representation of the Coxetergroup W . Denote the sheaf of lo
al holomorphi
 se
tions in the trivial bundleV reg �H over V reg by A0(H). LetA1(H) = 
1(V reg)
OV reg A0(H)The Dunkl 
onne
tion on A0(H) is given by:r(k) : A0(H)! A1(H)r(k)h =X�>0 k��� d�� 
 (1� �(s�))h49



Note that by des
ribing how r(k) a
ts on the 
onstant se
tions it is 
ompletelydetermined as a 
onne
tion. The a
tion of W on V reg naturally extends to ana
tion on A�(H) by a
ting as � on the 
onstant global se
tions.Theorem 3.8 (Dunkl) The 
onne
tion r(k) 
ommutes with the W -a
tionand has zero 
urvature, i.e. is 
ompletely integrable.Proof: Omitted.2We will 
on
entrate on the 
ase that � is the re
e
tion representation ofW . Forte
hni
al reasons whi
h will be
ome 
lear in a moment we take the re
e
tionrepresentation on the di�erentials �1V rather than on V itself. In parti
ularA�(�1V ) = 
� 

1. The re
e
tion representation a
ts by�(w)d�� = d(w�)�for all w 2 W , � 2 V . Substituting this in the formula for the Dunkl 
onne
tionyields: r(k)d�� =X�>0 k�(�; �)�� d�� 
 d��Let �1; : : : ; �n 2 E denote an orthonormal basis for V . One 
he
ks that a lo
alse
tion ! =Pi fid��i is 
at for the Dunkl 
onne
tion i�dfi +X�>0 k�!(��)(�; �i)�� d�� = 0for all i. To obtain results about 
at se
tions we need the following lemma.Lemma 3.3 For any �; � 2 V the following equality holds:X�>0 k�(�; �)(�; �) = Æ � (�; �)Here Æ = Æ(k) is given by: Æ(k) = 2nX�>0 k�Proof: The sum on the left hand side is aW -invariant bilinear symmetri
 formon V . Be
ause W a
ts irredu
ible on V it must be a 
onstant Æ times the form(�; �). And we dedu
e:Æn = nXi=1 Æ(�i; �i) =X�>0 k�( nXi=1(�; �i)�i; �) ==X�>0 k�(�; �) = 2X�>0 k�This proves the lemma. 2 50



Corollary 3.3 If ! =Pi fid��i is a 
at lo
al se
tion thennXi=1 ��i dfi = �Æ!Proof: Using 
atness of ! we getnXi=1 ��i dfi = �X�>0 k�!(��)d�� == �Xi;j fiX�>0 k�(�; �i)(�; �j)d��j = �ÆXi fid��i = �Æ!This proves the 
orollary. 2Denote the Euler �eld Pi ��i ��i on V reg by E .Theorem 3.9 Let ! be a 
at lo
al se
tion and � = �(k) = 1 � Æ(k). Thend[!(E)℄ = �! and E!(E) = �!(E).Proof: Let fi be su
h that ! =Pi fid��i . Thend[!(E)℄ = d[Xi fi��i ℄ = ! +Xi ��i dfi = �!and E!(E) = EXi fi��i = !(E) +Xi;j ��jfi��j ��i == !(E) +Xi ��i dfi(E) = �!(E)This proves the theorem. 2Note that the se
ond statement of the theorem just states that the holomorphi
fun
tion !(E) is homogeneous of degree �.Theorem 3.10 The C -linear operator r(k)d on OV reg has lo
ally an (n+ 1)-dimensional kernel everywhere on V reg.Proof: First note that f is in the kernel of r(k)d i�"���� +X�>0 k��� (�; �)(�; �)��# f = 0for all �; � 2 V . We will 
all su
h an f a solution of r(k)d. Su
h a solutionis 
ompletely determined by its �rst order Taylor part. Hen
e the kernel is atmost (n+ 1)-dimensional. 51



Now assume that the multipli
ity parameter k is su
h that � = �(k) 6= 0.Then if ! lo
ally runs over the 
at se
tions of r(k), the fun
tions !(E) spanan n-dimensional subspa
e of the kernel of r(k)d all of homogeneous degree� 6= 0. Together with the 
onstants, this yields that the kernel is exa
tly(n + 1)-dimensional. The 
oeÆ
ients of solutions depend polynomially on k,so the operator r(k)d has an (n+ 1)-dimensional kernel for all values of k. 2There is a ni
e way to reformulate this result in terms of 
onne
tions. Considerthe following mapping (sheafs are over V reg):~r(k) : O �
1 ! 
1 
 (O �
1)~r(k)(f + !) = (df � !)
 1 +r(k)!One readily 
he
ks that ~r(k) is a 
onne
tion.Theorem 3.11 The 
onne
tion ~r(k) is 
ompletely integrable and regular sin-gular along the re
e
tion planes.Proof: A lo
al se
tion f + ! is 
at i� ! = df and r(k)df = 0. By theprevious theorem, there are suÆ
iently many of su
h f to 
on
lude 
ompleteintegrability. That the 
onne
tion is regular singular is 
lear from the expli
itformula for r(k).2This result shows that the theory of regular singular integrable 
onne
tionsapplies to solutions of r(k)d.Remark 3.3 One 
he
ks that a solution f of r(k)d also satis�es" nXi=1 �2�i +X�>0 2k��� ��# f = 0The operator between square bra
kets is a deformation in the parameter k ofthe eu
lidean Lapla
e operator and is sometimes denoted by L(k). If R is a
rystallographi
 root system and k takes some spe
i�
 values, L(k) turns up asthe radial part of the lapla
ian on the tangent spa
e of a Riemannian symmetri
spa
e. The operator L(k) (R de�ned over R, k arbitrary) was studied extensivelyby E. Opdam in a paper about multivariable Bessel fun
tions asso
iated to rootsystems [O℄.Observe that the group W a
ts naturally on A�(C ��1V ) and this a
tion 
om-mutes with ~r(k). This enables us to 
onstru
t the monodromy representationfor the quotient WnV reg by analyti
 
ontinuation of solutions of r(k)d.Take v 2 V reg ; k 2 K. Consider rd as an operator on the stalk of holomorphi
germs O(k;v) (i.e. view the parameter k in r as an additional variable). Itis well known that the solutions then form a free Ok module of rank n + 1.52



Hen
e lo
al solutions of rd near v 
an be 
onsidered as a ve
tor bundle Fvover K. Any w 2 W indu
es a 
anoni
al ve
tor bundle isomorphism �w of Fvonto Fw(v). If S is a regular W -orbit we 
an identify the bundles Fv, v 2 Sby the isomorphisms �w . This yields a ve
tor bundle FS over K of rank n+ 1.The �bre of FS at k 2 K will be denoted by FS(k). Lifting loops in WnV regto W by the proje
tion together with analyti
 
ontinuation yields a 
anoni
alanti-homomorphism� : �1(WnV reg; S) �= B(M)! End(FS):By spe
ialising k we get a right representation �(k) on the ve
tor spa
e FS(k).We write �(k; g) for �(k)(g). To study these representations we will 
omputethe exponents of r(k)d along the re
e
tion planes.Lemma 3.4 Suppose k 2 K 0. Along a plane �� = 0, the exponents of r(k)dare 0 with multipli
ity n and 1� 2k� with multipli
ity one.Proof: That these are the only two exponents o

uring along �� = 0 followsby letting L(k) a
t on a solution of the form (��)�f for some exponent � and aholomorphi
 fun
tion f . If we take k = 0 then solutions are just polynomialsof degree at most one, i.e. exponents 0 and 1 appear with multipli
ity n and 1respe
tively. Be
ause the exponents 0 and 1� 2k� do not 
oin
ide if k rangesover K 0, these multipli
ities 
an not 
hange. 2Theorem 3.12 Let k 2 K 0 and 1 � m2 < Re(�(k)) � 1. If �(k) 6= 0 then�(k) is equivalent to the sum of the trivial representation and the re
e
tionrepresentation %(k) of B(M) (as right representations). If �(k) = 0 then �(k)is equivalent to the logarithmi
 re
e
tion representation.Proof: If �(k) 6= 0 then the representation �(k) splits in the trivial for the
onstant fun
tion and an n-dimensional for the homogeneous degree � part.However, �(k; gj) is a 
omplex re
e
tion with eigenvalue �qj , and for k = 0,�(0) splits as indi
ated. The (
ontinuous) deformation in k 
an only be done inone way as we observed in the previous se
tion. This settles the � 6= 0 
ase.If �(k) = 0 then for any r(k)-
at se
tion ! we 
omputed that d[!(E)℄ = 0.Hen
e !(E) is a 
onstant for all su
h se
tions. At any point in V reg the valueof a r(k) 
at se
tion 
an be pres
ribed freely, showing that !(E) is not zero forall 
at se
tions. The exterior derivative d maps the solutions of r(k)d onto ther(k) 
at se
tions. A solution f is homogeneous of degree 0 i� (df)(E) vanishes atsome point in V reg (be
ause it is then 
onstant and equal to zero). However, atany point in V reg the �rst order part of f 
an be pres
ribed freely. This impliesthat the solutions of r(k)d of homogeneous degree �(k) form an n-dimensionalsubspa
e for all values of k. The ve
tor spa
e of germs of homogeneous solutionsof r(k)d at v 2 V reg is denoted by Ev(k).53



The operator E � �(k) is an endomorphism of FS and its kernel is a subbundleof FS of rank n, invariant under monodromy. Denote this bundle by ES . Asendomorphism of ES , the element �(g1 � � � gn) has the 
hara
teristi
 polynomial:nYj=1(T � q�mjh )Spe
ializing k in this polynomial at some �xed value, always yields a polynomialwith n distin
t roots. Note that bundles overK are trivial and hen
e there existsa global non vanishing se
tion f
 2 �(FS) su
h that�(g1 � � � gn)f
 = exp(2�i�(k)h )f
The ve
tor f
(k) being unique up to a s
alar multiple, we may assume thatf
(k) = 1 (as a 
onstant fun
tion) if �(k) = 0. Similarly we get non vanishingse
tions e1; : : : ; en on K 0 in ES su
h that�(gi)ej = nXl=1(ri)ljelfor all i; j. Consider the fun
tion ` = f
 � 1�(k)Note that it is in OK�fvg, be
ause f
 � 1 vanishes identi
ally if �(k) = 0. By
ontinuity in k, we 
on
lude rd` = 0, so ` is in fa
t a global se
tion in thebundle FS . Analyti
 
ontinuation gives:�(g1 � � � gn)` = exp(2�i�(k)=h)f
 � 1�(k) = exp(2�i�(k)h )`+ exp(2�i�(k)=h)� 1�(k)For �(k) = 0 we get �(k; g1 � � � gn)`(k) = `(k) + 2�ihSimilarly one shows that (
ontinuing `(k) through V reg)`(k; x�) = `(k; �) + log(x)for all x 2 C � , � 2 V reg . All transformations �(gj) are 
omplex re
e
tions andthe a
tion of �(g1 � � � gn) on ` shows in parti
ular that if �(k) = 01 2 SpanC fe1(k); : : : ; en(k)gThis implies that the fun
tions ej(k) are linearly independent (over C ) be
auseup to a s
alar there is exa
tly one linear 
ombination of these fun
tions whi
his monodromy invariant. This shows that �(k) is the logarithmi
 re
e
tionrepresentation if �(k) = 0. 2 54



3.4 The evaluation mappingLet S be a regular W -orbit and U a simply 
onne
ted neighborhood of S inWnV reg. By identifying the dual bundles F�v , v 2 S by the duals of the iso-morphisms �w we get the dual bundle F�S . We identify �1(WnV reg ; S) andB(M) using Brieskorn's theorem and sometimes 
all elements of B(M) loops.Transposing � yields a (left) representation�� : B(M)! End(F�S):There is a 
anoni
al holomorphi
 mapping ev : K � U ! F�S into the dualbundle given by:1. For all u 2 U , k 7! ev(k; u) is a global se
tion in F�S .2. ev(k; u)(f) := f(u). Here f is an element of the �bre FS(k).Note that the evaluation f(u) in 2 is well de�ned and indeed de�nes a se
tionin F�S .The name ev stands for evaluation. This evaluation mapping extends to a multivalued holomorphi
 mapping ev of K � (WnV reg) into F�S . For �xed k 2 K wedenote by ev(k) the multi valued holomorphi
 mapping ev(k; �) of WnV reg intothe dual of the �bre FS(k).Before stating some properties of the evaluation mapping we introdu
e theWronskian of r(k)d. Let �1; : : : ; �n 2 V be a basis and let f0; : : : ; fn be abasis of lo
al solutions of r(k)d.De�nition 3.13 The Wronskian of r(k)d is de�ned up to non-zero s
alar mul-tipli
ation by: J := det0BBBBBB� f0 ��1f0 : : : ��nf0f1 ��1f1 : : : ��nf1... ... ...fn ��1fn : : : ��nfn
1CCCCCCANote that J is indeed independent of the 
hoi
e of basis up to a non zero s
alarmultiple.Lemma 3.5 The Wronskian of r(k)d is given by:J = Y�>0(��)�2k�55



Proof: From the de�nition of the Wronskian as a determinant one dedu
esthat J satis�es "�� +X�>0 2k�(�; �)�� # J = 0for all � 2 V . The proposed produ
t formula for J satis�es all these equations.This proves the lemma. 2By identifying WnV reg and X using the Chevalley proje
tion P we will hen
e-forth 
onsider ev as a multivalued holomorphi
 mapping on K �X .Theorem 3.13 For any k 2 K the mapping ev(k) satis�es the following prop-erties:1. It maps lo
ally biholomorphi
ally into an aÆne subspa
e A(k) of F�S(k).2. Continuing ev(k) along a loop g 2 B(M) yields ��(k; g)ev(k).3. Near a subregular point x, we 
an pi
k lo
al 
oordinates y1; : : : ; yn and 
er-tain linear 
oordinates of F�S(k) su
h that near x, the evaluation mappinghas the following form:ev(k) = (y 12�kj1 ; y2; : : : ; yn; 1)Proof: Evaluation of the 
onstant fun
tion 1 at any point yields 1, provingthat it maps into an aÆne subspa
e of F�S(k) whi
h we will denote by A(k).That evaluation ev(k) is lo
ally biholomorphi
 everywhere follows from the fa
tthat df for a solution f of r(k)d 
an be pres
ribed freely at any point of V reg .This proves 1. Statement 2 is 
lear.Near x, there are holomorphi
 fun
tionsx1; : : : ; xn; 1su
h that none of them is (lo
ally) divisible by the dis
riminant D and thepullba
ks by P of the following fun
tions form a basis of FWy(k) for y near x:D 12�kjx1; x2; : : : ; xn; 1The Wronskian takes the form (with P1; : : : ; Pn the standard 
oordinates onC n ): D�kjx1 � det��(D; x2; : : : ; xn)�(P1; : : : ; Pn) �+ higher order terms of DHen
e both x1 and det(�(D;x2;:::;xn)�(P1;:::;Pn) ) are non-vanishing near x. The followingare indeed 
oordinates near x:y1 = D � x( 12�kj)�11 ; y2 = x2; : : : ; yn = xn56



With respe
t to these 
oordinates, the evaluation mapping 
an be written asstated in 3. 2Corollary 3.4 Let y1; : : : ; yn be 
oordinates near x as above. Suppose thatkj = 12 � 1pj , for some pj 2 f2; 3; : : :g. The 
ompositionev(k) Æ (ypj1 ; y2; : : : ; yn)extends lo
ally biholomorphi
ally to a neighborhood of x. (It is in fa
t the iden-tity mapping).Proof: This is 
lear if we write ev(k) in the 
oordinates y1; : : : ; yn also. 2Our lo
al analysis of the evaluation mapping reveals its bran
hing behaviour atsubregular points of the dis
riminant. We use this analysis later on to studybran
hing behaviour of 
overings at the other singular points also.Consider the subbundle ES of FS introdu
ed in the previous se
tion. It is stableunder monodromy and hen
e we also have a monodromy representation �� onE�S . The natural restri
tion mappingRes(k) : F�S(k)! E�S(k)is a surje
tive intertwining operator. If �(k) 6= 0 the ve
tor spa
e ES(k) is
omplemented by the 
onstant fun
tions in FS(k). In this 
ase, restri
tionindu
es an equivalen
e between the annihilator of the 
onstant fun
tions andE�S(k).In se
tion 3.5 and 3.7 we will study restri
ted evaluation Rev := ResÆev insteadof evaluation itself be
ause the 
onstant fun
tions do not play an important rolethere. The 
onstants do play an important role however in the paraboli
 theory.Hen
e in se
tion 3.6 we will study the mapping ev .3.5 The ellipti
 
aseThroughout this se
tion we assume that we have 
hosen the marks at the nodesof a �nite irredu
ible Coxeter diagram in su
h a way that it be
omes ellipti
.This means that the exponent of the marked diagram (and hen
e of all its 
on-ne
ted subdiagrams) is positive, or equivalently, that the invariant Hermiteanform H for the standard re
e
tion representation is positive de�nite. The 
or-responding multipli
ity parameter k is given by ki = 1=2� 1=pi.Let � : eX ! X be the universal 
overing of the dis
riminant 
omplement.Identify Aut( eXjX) and B(M). We lift the mapping Rev to a single valuedmapping fev : eX ! E�S(k). Let �(p) be the smallest normal subgroup of B(M)57




ontaining gp11 ; : : : ; gpnn . Let Xu(p) := �(p)n eX. Any pj-fold loop around atype j re
e
tion plane indu
es the identity automorphism of Xu(p) and it isuniversal with respe
t to this property. The proje
tion � indu
es a proje
tion�u : Xu(p) ! X . We refer to Xu(p) as the universal 
overing of X of lo
aldegree p. In the ellipti
 
ase, this 
overing 
an be extended very ni
ely, in thesense of the following theorem.Theorem 3.14 Suppose k 2 K is given by kj = 1=2� 1=pj for some integerspj 2 Z�2. If �(k) > 0 there exists a rami�ed 
overing �r : Xr(p) ! C n ,bran
hing along � with lo
al degrees pj , su
h that Xu(p) = ��1r (X) and �u isjust the restri
tion of �r.Proof: During the proof we 
onstru
t the 
ommuting diagram shown in �gure3.1, 
onsisting of 
overing maps and several fun
tions related to evaluation.
X C nnf0g C nXu(p) X�r (p) Xr(p)eX E�S(k)

- -? ? ?? - -




� 6- ev�revufev
Figure 3.1: The ellipti
 
ase.We prove the theorem by indu
tion on the rank n. In rank one this is just theremark that the mapping �p : C � ! C � ; �p : z 7! zp
an be extended to C (with image C ). Now assume that su
h bran
hed 
overingsexist for all ellipti
 diagrams of rank less than n. Take a singular point x 2�nf0g. There exist lo
al 
oordinates on a neighborhood U of x su
h that U \Xis biholomorphi
ally equivalent with a produ
tU \X �= �m1 � U1 � : : :� UsHere ea
h Uj denotes the 
omplement of a dis
riminant of a paraboli
 irredu
iblesub root system in a polydis
. For example, take the diagram of A3, numberthe 
orresponding simple roots from left to right.If we take x the Chevalley image of a point stable exa
tly under the �rst twosimple re
e
tions, then a small neighborhood would look likeU \X �= �1 � (�21n�(A2))58



where �(A2) denotes a dis
riminant of type A2. If x is the Chevalley image ofa point stable exa
tly under the �rst and third simple re
e
tion su
h a neigh-borhood would look like: U \X �= �1 ���1 ���1Where ��1 denotes the pun
tured dis
. Be
ause the subdiagrams have lower rankand are of ellipti
 type, we 
on
lude by indu
tion that there exists a rami�ed
overing �U : Xram(p; U)! Usu
h that ��1U (U \X) is universal of degree p over U \X . While fev bran
heswith the right orders along � it des
ends to a lo
ally biholomorphi
 fun
tionevu on ��1U (U \ X). Moreover, 
onsidering theorem 3.13, evu extends lo
allybiholomorphi
ally over the �U pre image of all sub regular points in U .The preimage of the non subregular part of U is strati�ed in strata whi
h are allof 
odimension at least two. Using the isomorphism theorem from se
tion 1.1we 
on
lude that evu extends lo
ally biholomorphi
ally over all of Xram(p; U)to a mapping ev�r .Every 
overing automorphism of Xram(p; U) �xes the pre image of x 2 U .Hen
e the only automorphism whi
h �xes the mapping ev�r is the identity. Any
onne
ted 
omponent of the pre image ��1u (U) � Xu(p) is a quotient of theuniversal degree p 
overing ��1U (U \ X). However, be
ause ev�r must be 
on-stant on �bres of this quotient mapping, we 
on
lude by the previous remarkthat a 
onne
ted 
omponent of ��1u (U) is in fa
t isomorphi
 to this universallybran
hed 
overing. Hen
e all lo
al extensions �t together and we get a rami�ed
overing ��r : X�r (p) ! C nnf0g 
ontaining Xu(p) as a sub
overing. Moreover,evu extends lo
ally biholomorphi
ally over all of X�r (p) to a mapping ev�r .It remains to show that we 
an extend X�r (p) over the origin. We prove thisby using a topologi
al argument and again Hartog's theorem. It turns out thatev�r is globally biholomorphi
 on X�r (p) with image E�S(k)nf0g. Let e1; : : : ; en bea basis of ES(k), where e1; : : : ; en are 
hosen as in the end of se
tion 3.3. Lete�1; : : : ; e�n be the dual basis of E�S(k). As in de�nition 3.12 let H�(e�i ; e�j ) = H�ijbe a ��(k)-invariant hermitian form. We de�ne a ��(k)-invariant metri
 d onE�S(k) by: d(a; b)2 := H�(a� b; a� b)jjvjj := d(v; 0)For any � > 0 denote the ball with radius � 
entered at a 2 E�S(k) byBd(�; a) := fb 2 E�S(k) j d(a; b) < �gWe 
all a point y 2 X�r (p) �-wide if it has a neighborhood Xy su
h that ev�rmaps Xy biholomorphi
ally onto the ball Bd(�; ev�r(y)). We will see that there59



exists an � > 0 su
h that every y 2 X�r (p) is (jjev�r(y)jj � �)-wide. To �nd su
han � 
onsider for ea
h N 2 f1; 2; : : :g the following set:XN = fx 2 X�r (p) j x is Æ-wide, for some Æ > jjev�r(x)jjN gThen one easily 
he
ks:1. XN is open for all N .2. If N �M then XN � XM .3. Ea
h XN is Aut(X�r (p)jC nnf0g) invariant and proje
ts onto a weightedC � invariant subset of C nnf0g.4. Ea
h x 2 X�r (p) is 
ontained in some XN .Observations 1, 3 and 4 imply that the proje
tions of the setsXN form a 
overingof Pd(C n ) with open sets. The spa
e Pd(C n ) being 
ompa
t, this implies thatX�r (p) is already 
overed by �nitely many sets XN1 ; : : : ; XNm . Now 2 impliesthat X�r (p) = XN for some N 2 f1; 2; : : :g. Then we 
an take � = 1=N . Itfollows that if we have an inverse for ev�r on some neighborhood of a 2 E�S(k),then this lo
al inverse automati
ally extends to an inverse of ev�r on at leastBd(�jjajj; a). Hen
e every lo
al inverse 
an be extended holomorphi
ally to allof E�S(k)nf0g be
ause this is a simply 
onne
ted set.This in turn implies that ev�r is globally inje
tive, be
ause fx 2 X�r (p) j ev�r(x) 6=0g is 
onne
ted. Now ev�r 
annot attain the value 0, for suppose ev�r(x) = 0,then ev�r would be 
onstant on the ��r �bre 
ontaining x, violating the inje
tivityof ev�r . This proves that ev�r maps X�r (p) biholomorphi
ally onto E�S(k)nf0g.Let � be a holomorphi
 inverse of ev�r on E�S(k)nf0g. The 
omposition ��rÆ�
an be extended to E�S(k) (Hartog) revealing E�S(k) as the universal bran
hed
overing of C n bran
hing with the pres
ribed indi
es along the subregular points.This 
learly proves theorem 3.14.2We repeat the important observation at the end of the proof in the next theorem.Theorem 3.15 If the marked Coxeter diagram is of ellipti
 type, the multival-ued mapping Rev(k) has a single valued inverse �r : E�S(k)! C n . Moreover, �ris the universally bran
hed 
overing bran
hing along the subregular points withthe pres
ribed indi
es pj.Proof: 2We 
an now easily draw some remarkable 
onsequen
es from this theorem. Thefollowing fa
ts were already known, but proofs for 
orollaries 3.6 [C℄ and 3.7 [OS℄where only provided by (non-trivial) 
ase by 
ase 
he
kings using a 
omputer.60



Corollary 3.5 If a marked Coxeter diagram is ellipti
, the asso
iated 
omplexre
e
tion group is �nite. Let z be the order of the 
enter ofW and � the exponentof the marked diagram. Then z=� is an integer and the order of the 
omplexre
e
tion group equals jW j��n.Proof: From (weighted) homogeneity of the 
overing �r we 
on
lude that it is�nite (it is lo
ally �nite at 0 2 E�S(k)). The degrees of �r are dj=�, 1 � j � n.This shows that z=� is an integer be
ause z = g
d(d1; : : : ; dn). The order of are
e
tion group is the produ
t of its degrees. Hen
e the order of the 
omplexre
e
tion group equals jW j��n. 2Corollary 3.6 (Coxeter) A �nite re
e
tion group asso
iated with an ellipti

onne
ted marked Coxeter diagram has the following presentation:hr1; : : : ; rn j rpjj = e; j 2 f1; : : : ; ng(ri; rj)mij = (rj ; ri)mji 1 � i < j � niHere the mij denote the Coxeter integers of the diagramProof: Su
h a group is just the group of automorphisms of the universallyrami�ed 
overing, hen
e isomorphi
 to a braid group modulo order relations. 2Corollary 3.7 (Orlik & Solomon) The primitive homogeneous invariantsQ1; : : : ; Qn 2 P [C n ℄Gof a �nite 
omplex re
e
tion group G asso
iated with an ellipti
 marked Coxeterdiagram, 
an be 
hosen in su
h a way that the mapping (Q1; Q2; : : : ; Qn) is arami�ed 
overing of C n with bran
h lo
us �.Proof: Just note that the 
overing mapping �r is a weighted homogeneous poly-nomial mapping. Hen
e its 
oordinates are primitive homogeneous invariantsfor the re
e
tion group G.23.6 The paraboli
 
aseIn this se
tion we will assume that the marked diagram (M;p) is of paraboli
type, i.e. � = 0 and M has rank n. This implies also that all 
onne
tedsubdiagrams are of ellipti
 type. The C � -a
tion on X lifts to a C -a
tion on eXa

ording to the 
ommuting diagram in �gure 3.2.This a
tion is free, indeed x 7! 1 � x is just the a
tion of the 
entral element(g1g2 � � � gn)h on eX, whi
h is not of �nite order. Be
ause all subdiagrams areellipti
, there exists a universally bran
hed 
overing ��r : X�r (p)! C nnf0g The61



C � eX eXC � �X X--? ?�� �exp(2�i�)� �Figure 3.2: C -a
tion on eX.
X C nnf0gXu(p) X�r (p)eX A(k)
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Figure 3.3: The paraboli
 
ase.C -a
tion on eX indu
es a C -a
tion on X�r (p). As in the ellipti
 
ase, we 
anlift the evaluation mapping to a lo
ally biholomorphi
 mapping ev�r on X�r (p).Hen
e we obtain the diagram in �gure 3.3.We pi
k a basis e1(k); : : : ; en(k); `(k) of FS(k) as in se
tion 2, and denote thedual basis by e�1; : : : ; e�n; `�. (So�(k; gi)ej(k) = ej(k) + sijei(k)et
.) One 
he
ks that the evaluation mapping satis�esev(k; � � x) = ev(k; x) + log� � `�for all x 2 X , � 2 C � . Hen
e the map ev�r satis�esev�r(� � x) = ev�r(x) + 2�i� � `�for all � 2 C , x 2 X�r (p). In parti
ular, the C -a
tion on X�r (p) is free.To prove our main result, we need a ��(k)-invariant metri
 on the aÆne spa
eA(k) introdu
ed in se
tion 3.4.Lemma 3.6 Let Ao(k) � F�S(k) denote the annihilator of the 
onstant fun
-tions. There exists a basis v1; : : : ; vn of Ao(k) su
h that:��(gi)vj = vj + sjivi; For all 1 � i; j � n62



Proof: De�ne vi as si`� +P sije�j . Then one 
he
ks that these vi lie in Ao(k)and satisfy the stated identities. Remains to prove that they are independent.By lemma 3.2 every non-trivial invariant subspa
e of Ao(k) 
ontains C `� . Theve
tors vi span su
h a spa
e and hen
e `� is a linear 
ombination of the vi. Butthe span of vi does not equal C `� and must therefore be at least n-dimensional(again by lemma 3.2). This proves that the vi are independent.2By this theorem we 
on
lude that there exists a �� invariant hermitian form H�on Ao(k). Moreover, H� 
an be 
hosen paraboli
. We now de�ne the \metri
"on A(k) and the 
orresponding \balls" by:d(a; b)2 = H�(a� b; a� b); a; b 2 A(k)Bd(�; a) = fb 2 A(k) j d(b; a) < �g; a 2 A(k); � > 0Note that these balls a
tually are tubes. They are invariant under translationalong any multiple of `�.We 
an now state and prove the main result.Theorem 3.16 The mapping ev�r maps X�r (p) biholomorphi
ally onto A(k).Proof: Analogous to the ellipti
 
ase. We 
all a point x 2 X�r (p) �-wide if thereexists a neighborhood Yx of x su
h that ev�r maps Yx biholomorphi
ally ontoBd(�; ev�r(x)). The 
laim is that there exists an � > 0 su
h that every point ofX�r (p) is �-wide. Consider for ea
h N 2 N� the following set:XN = fx 2 X�r (p) j x is Æ-wide for some Æ > 1=NgAgain these sets satisfy the following properties:1. Ea
h XN is an open set.2. Ea
h XN is C and Aut(X�r (p)jC nnf0g) invariant.3. If N �M , then XN � XM .4. Every x 2 X�r (p) is 
ontained in some XN .Only statement 4 needs some extra explanation. It follows by 
ombining thefa
t that ev�r is lo
ally biholomorphi
 and its transformation behaviour w.r.t.the C -a
tion on X�r (p). Now statements 1, 2 and 4 imply that the sets XN forma 
overing of the 
ompa
t spa
e Pd(C n ) with open sets. From 3 we 
on
ludethat X�r (p) = XN for some N 2 N� . Hen
e every point of X�r (p) is �-wide if wetake � = 1=N . 63



Now every lo
al inverse of ev�r at ev�r(x) 
an be extended to at least the tubeBd(�; ev�r(x)). Be
ause A(k) is simply 
onne
ted we 
onlude that ev�r admits aholomorphi
 inverse on all of A(k). This proves the theorem. 2To dedu
e a presentation for the geometri
 realisation G(M;p) we need thefollowing lemma.Lemma 3.7 View the re
e
tion representation %(k) of B(M;p) as a 2n di-mensional representation over R. Then the only non-trivial invariant subspa
es(over R) are 
ontained in C � where � denotes a non-zero %(k)-�xed ve
tor(unique upto a 
omplex s
alar).Proof: Let U be an invariant subspa
e (over R), U 6= f0g. The endomorphism1 � %(k; gj) maps into U \ C ej . Suppose U is not 
ontained in C � then we
an assume 
rer 2 U for some r 2 f1; : : : ; ng and some 
r 2 C � . Now letj 2 f1; : : : ; ng be arbitrary. Be
ause er is a 
y
li
 ve
tor for %(k) (over C ) thereis a g 2 B(M;p) su
h that (1� %(k; gj))%(k; g)(
rer) 6= 0. But this implies thatwe may assume 
jej 2 U for some 
j 2 C � .Now for any i; j we have(1� %(k; gj))(1� %(k; gi))(
jej) = 
jsijsjiej 2 UIf i; j are 
hosen in su
h a way that mij > 2 and not both qi and qj equal 1,then sijsji is not a real number. This implies that C ej � U and 
onsequentlyU = C n . 2Corollary 3.8 The geometri
 realisation G(M;p) of B(M;p) has the followingpresentation:hr1; r2; : : : ; rn j rpii = e; i 2 f1; : : : ; ng(ri; rj)mij = (rj ; ri)mji ; 1 � i < j � n(r1r2 � � � rn)h=z = eiProof: The geometri
 realisation as a matrix-representation is equivalent to therestri
tion of ��(k) to Ao(k). The matrixgroup generated by ��(k) on F�S(k)is isomorphi
 to B(M;p) a

ording to the previous theorem. The kernel of thehomomorphism \restri
tion to Ao(k)" 
onsists exa
tly of all elements a
ting asa translation on A(k). The set of all o

uring translation ve
tors in Ao(k) is adis
rete abelian subgroup of Ao(k), denoted by L. The set L is 
learly ��(k)-invariant. Hen
e by the previous lemma, L is either of rank 2n, or 
ontainedin C `� . However L 
annot be of full rank, for this would imply that C nnf0g is
ompa
t (being a quotient of A(k)=L).We 
on
lude that L must be 
ontained in C `� . Moreover, by 
onsidering the C -a
tion on X�r (p) one �nds L = Z2�iz `�. The kernel of the restri
tion is generated64
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 diagrams.by ��(k; g1g2 � � � gn)h=z . Hen
e the presentation of B(M;p) has to be extendedby one relation exa
tly as stated in the 
orollary. 2We 
on
lude this se
tion by dedu
ing a Chevalley theorem on the invariants in
ertain rings of theta fun
tions. The results are similar to those obtained byLooijenga in [L℄. Be
ause the paraboli
 
ases for whi
h n equals two are dire
tlyrelated to the 
lassi
al theory of the Gauss fun
tion, we will restri
t ourselvesto the study of the seven remaining paraboli
 
ases, listed in table 3.1. (In thediagram the �rst vertex is indi
ated by a 
ross mark.)In ea
h 
ase, monodromy indu
es a transformation group C(M;p) of the (n�1)-dimensional aÆne spa
e A` := A(k)=C `� . This group a
ts dis
retely, 
o
om-pa
tly and is generated by n aÆne 
omplex re
e
tions satisfying the order andbraid relations as indi
ated by the marked Coxeter diagram (M;p). The re-
e
tions ��(k; g2); : : : ; ��(k; gn) have a unique simultaneous �xed point on A`whi
h we will denote by f . Note that f 
an be taken a s
alar multiple of e�1(mod `�). We will study this later on.Observe that H� really indu
es a metri
 on A`. Introdu
e the point group Pof C(M;p) as 
ertain isometries of A` �xing f as follows. The group P will bethe image of the homomorphismp : C(M;p)! Aut(A`); p(g) : v 7! g(v)� g(f) + fThen p(g) �xes f and p is indeed a homomorphism. We also write p for thepull ba
k of p to B(M) by ��(k). Note that P is generated by p(g1); : : : ; p(gn)and these transformations are again 
omplex re
e
tions satisfying the order andbraid relations of (M;p).Denote the translation of A` over � 2 Ao(k)=C `� by t� and take� = f� 2 Ao(k)=C `� j t� 2 C(M;p)g65



If � 2 � then g(f + �) � f 2 � for all g 2 P . Indeed if p(go) = g for go 2 Cthen tg(f+�)�f = got�g�1o . The point group a
ts naturally on Ao(k)=C `� andstabilizes �. Be
ause C(M;p) a
ts dis
retely on A` and P a
ts irredu
ibly evenover R (only trivial P -stable aÆne subspa
es) we 
on
lude that � is either f0gor a latti
e.We 
an now prove the following important theorem:Theorem 3.17 The group C(M;p) is the semidire
t produ
t of its normaltranslation subgroup T� and its point group P : C(M;p) = T�P . The groupP is isomorphi
 to the 
omplex re
e
tion group asso
iated to the subdiagram ofM obtained by deleting the �rst node. Moreover � is a latti
e of the form� = SpanZf��(k; g)� j g 2 B(M)gfor some spe
ial eigenve
tor � 2 Ao(k)=C `� of ��(k; g1).Proof: The subgroup of P given by hp(g2); : : : ; p(gn)i is isomorphi
 to there
e
tion group hr2(k); : : : ; rn(k)i a
ting on C n�1 . One 
omputes that in allseven paraboli
 
ases this re
e
tion group already 
ontains a 
omplex re
e
-tion r satisfying the same order and braid relations as p(g1) 2 P . Be
ausehr2(k); : : : ; rn(k)i �xes a positive de�nite hermitean stru
ture on C n�1 it fol-lows that p(g1) 2 hp(g2); : : : ; p(gn)i:Indeed the relations imply an expli
it expression of su
h a re
e
tion in terms ofthe hermitean stru
ture.Now 
ompute p(g�11 )��(k; g1)v = v + (1� ��(k; g�11 ))f:So p(g�11 )��(k; g1) is a translation over a non zero spe
ial eigenve
tor � of��(k; g1).The statements of the theorem now follow from the remarks that p(g�11 ) 2C(M;p) and C(M;p) is generated by p(g2); : : : ; p(gn) and t(1���(k;g�11 ))f . 2Remark 3.4 It turns out that the two 
rystallographi
 groupsC(A3; 4) and C(B3; 4; 2)are isomorphi
. In both 
ases the point group is isomorphi
 to B(A2; 4) and thelatti
e is generated by a spe
ial eigenve
tor of ��(k; g2).Remark 3.5 A 
omplete 
lassi�
ation of 
omplex 
rystallographi
 re
e
tiongroups 
an be found in an arti
le by Popov [P℄.66



The next step is now to introdu
e a 
ertain kind of theta fun
tions on A`. Letthe inverse of the evaluation mapping on A(k) be given by:� = (�1; : : : ; �n) : A(k)! C nnf0gBy using some properties of the evaluation mapping one dedu
es for all j inf1; : : : ; ng:1. �j(u+ x`�) = edjx�j(u); u 2 A(k); x 2 C . (dj is the jth invariant degreeof the real re
e
tion group W ).2. �j(��(k; g)u) = �j(u) for all u 2 A(k) and g 2 B(M;p).Let � 2 FS(k) be su
h that `�(�) = 1 and �(k; gj)� = � for j = 2; : : : ; n. Su
ha � is unique modulo the 
onstant fun
tions. Consider the entire fun
tion �j onA` de�ned by �j(u+ C `� ) = e�dju(�)�j(u):Using the properties of �j one 
he
ks that �j is well de�ned and satis�es:�j(��(k; g)u) = e�dj(u(�(k;g)�)�u(�))�j(u); g 2 B(M;p)In parti
ular �j(gu) = �j(u) for all u 2 A`; g 2 P . From these transformationformulae we see that �j is a P -invariant theta fun
tion on A` with respe
t tothe latti
e �. Let us now study the general theory of su
h theta fun
tions. Inea
h of the seven paraboli
 
ases there exists a unique ��(k)-invariant positivede�nite Hermitean stru
ture (�; �) on Ao(k)=C `� satisfying Im(�;�) = Z: Thealternating form Im(�; �) turns out to be non-degenerate. It is well known [SD℄that there exists a basis of � over Z su
h that the matrix of this alternatingform with respe
t to this basis takes the following form:� 0 d�d 0 �Here d is a diagonal matrix diag(t1; : : : ; tn�1) for some positive integers satisfy-ing 1 = t1 j t2 j : : : j tn�1. These integers are 
alled the invariant fa
tors of thealternating form. The invariant fa
tors are listed in table 3.2.Theorem 3.18 Suppose # is a theta fun
tion on A` satisfying:1. #(u+ �) = eL(u;�)#(u) for all u 2 A` and � 2 �. Here L(�; �) is an aÆnefun
tion for all �.2. The fun
tion u 7! #(gu) transforms as stated in 1 for all g 2 P .There is a unique � : �! Z=2Z, independent of #, and a D 2 N su
h that67



1. L(u; �) � D(�(u�f; �)+ �2 (�; �)+�i�(�)) (mod 2�i), for all u 2 A`; � 2 �.2. �(�+ �) � �(�) + �(�) + Im(�; �) (mod 2), for all �; � 2 �.Here f denotes the P -�xed point in A`. We 
all su
h a # a P -stable thetafun
tion of degree D.Proof: This relies heavily on the general theory of theta fun
tions. See forexample [SD℄.Clearly L(u; �) must be of the form (u � f; L�) + Q(�) for some real lineartransformation L of Ao(k)=C `� . By P invarian
e one dedu
es that L 
ommuteswith all ��(k; gj), j 2 f2; : : : ; ng. This implies that L is a (
omplex) s
alarmultipli
ation. Hen
e there is a D 2 C su
h that L(u; �) = D�(u�f; �)+Q(�).From the 
o
y
le relation for L(u; �) it follows that in fa
t D 2 Z.It is now general theory of theta fun
tions that shows that L(u; �) must be ofthe form L(u; �) � D(�(u� f; �) + �2 (�; �) + �i�(�)) (mod 2�i)for some P -invariant � : �! C =2Z satisfying the relation stated in the theorem.From the expli
it form of � and (�; �) one 
an 
he
k that in all seven paraboli

ases the fun
tion � is uniquely determined and takes values in Z=2Z. 2Corollary 3.9 For ea
h degree dj there is a Dj 2 N�1 su
h that if ��(k; g)indu
es t� 2 C then�dj(u(�(k; g)�)� u(�)) � Dj(�(u� f; �) + �2 (�; �) + �i�(�)) (mod 2�i)for all u 2 A`.Proof: The theta fun
tion �j is P -stable and transform under translation over� by the exponential of the left hand side of this equality. Hen
e by the previoustheorem there exists a Dj as stated. 2Note that the degree of �j equals Dj . The degrees D1; : : : ; Dn are listed in table3.2.Let �D be the set of P -stable theta fun
tions of degree D. For all D, �D is a�nite dimensional C ve
tor spa
e. In fa
t it the dimension of �D equals Dn�1times the produ
t of the invariant fa
tors of the alternating form Im(�; �) [SD℄.Let � = MD�0�Dthen � is a graded C algebra. The point group P a
ts naturally on this algebra.Note that the algebras of P -stable theta fun
tions are isomorphi
 for the two
ases (A3; 4) and (B3; 4; 2).We denote the subalgebra of P -invariant theta fun
tions by �P .68



Theorem 3.19 For all paraboli
 groups ex
ept (B3; 4; 2) the algebra �P equalsC [�1 ; : : : ; �n℄. In parti
ular it is isomorphi
 to a polynomial algebra.Proof: We do not 
onsider the marked diagram (B3; 4; 2) for it turns out that(A3; 4) determines the invariants in � for that 
ase.As 
oordinates of the inverse of the evaluation mapping it is 
lear that the �jand hen
e the �j are algebrai
ally independent. If # 2 �P is of degree D then
onsider the fun
tion # : A(k)! C de�ned by#(u) = eDu(�)#(u+ C `� )One 
he
ks that it satis�es1. #(u+ x`�) = exD#(u) for all u 2 A(k); x 2 C .2. #(��(k; g)u) = #(u) for all g 2 B(M;p).Note that by P -invarian
e of # it suÆ
es to 
he
k 2 for all g su
h that ��(k; g)indu
es a translation t� of C. To 
he
k this use 
orollary 3.9 and the degreesD1; : : : ; Dn as listed in the table.Using these properties it follows that the 
omposition #Æev(k) extends to aweighted homogeneous polynomial of degree D on C n . Hen
e # is a polynomialin �1; : : : ; �n. 2Remark 3.6 Similarly one 
an prove that the algebra of invariants of evendegree in �P related to C(B3; 4; 2) also equals C [�1 ; : : : ; �n℄. (Here the �1; : : : ; �nare the theta fun
tions related to the diagram (B3; 4; 2)).To end this se
tion I give a sket
h of the method to 
ompute the degrees Dj .Re
all that �(k; gj)` = `+xjej where the 
onstants xj are 
hosen in su
h a waythat x1�(k; g2 � � � gn)e1 + x2�(k; g3 � � � gn)e2 + : : :+ xnen = 2�ihwhere the right hand side is a 
onstant fun
tion. In parti
ular it is the (uptoa s
alar) unique monodromy �xed ve
tor. From this we 
an expli
itly 
ompute�.Take y2; : : : ; yn 2 C su
h that xj + nXl=2 ylsjl = 0for all j 2 f2; : : : ; ng. Proje
tion of ` onto the �(k; g2); : : : ; �(k; gn) �xed ve
torsalong the span of e2; : : : ; en gives� = `+ nXj=2 yjej :69



Diagram Invariant fa
torsof Im(�; �) Invariant degrees (�; �)(A3; 4) and(B3; 2; 4) 1; 2 2; 3; 4 2(B3; 3; 3) 1; 6 1; 2; 3 2p3(B4; 3; 2) 1; 3; 3 1; 2; 3; 4 2p3(D4; 3) 1; 3; 3 1; 2; 2; 3 2p3(F4; 2; 3) 1; 1; 3 1; 3; 4; 6 43p3(A5; 3) 1; 1; 3; 3 2; 3; 4; 5; 6 2p3Table 3.2: Stru
ture of the paraboli
 groups.Applying e�1 to 2�i=h yields that we 
an takef = 2�ihx1 e�1 + C `�for the ��(k; g2); : : : ; ��(k; gn) �xed ve
tor in A`.Consider t� with � = (1 � ��(k; g�11 ))f a generator of � as before. Then t� isindu
ed by ��(k; gg1) for some g in hg2; : : : ; gni. By 
orollary 3.9 we know�dj(f(�(k; gg1)�)� f(�)) � Dj(�2 (�; �) + �i�(�)) (mod 2�i)The real part of the right hand side 
an be 
omputed from table 3.2 where (�; �)is listed for ea
h 
ase. Substituting all expli
it formulas in the left hand sideand 
onsidering the fa
t that �(k; g)� = � we get:�dj 2�ihx1 (x1 + nXj=2 yjs1j) � Dj(�2 (�; �) + �i�(�)) (mod 2�i):With this result the degrees Dj 
an be 
omputed in ea
h 
ase.3.7 The hyperboli
 
aseThroughout this se
tion we assume that the 
onne
ted marked diagram (M;p)is of hyperboli
 type. This means that if we de�ne k 2 K by kj := 1=2� 1=pj70



then �(k) sati�es 1 �m2 < �(k) < 0. Lift Rev(k) to a single valued mappingfev on eX. Then fev is a lo
ally biholomorphi
 mapping satisfying:fev(x � y) = e2�i�x �fev(y); for all x 2 C ; y 2 eXby homogeneity of Rev(k). Again we de�ne an invariant Hermitian form H� onE�S(k), i.e. the signature of H� is (1; n� 1).De�nition 3.14 The set of ve
tors in E�S(k) on whi
h H� is positive is denotedby B . The unit ball in C n�1 by B. In a formula:B = fv 2 E�S(k) j H�(v; v) > 0gB = f(x1; : : : ; xn�1) 2 C n�1 j jx1j2 + : : :+ jxn�1j2 < 1gLemma 3.8 The set B is a trivial C � -bundle over B. To be pre
ise: there is abiholomorphi
 mapping � : B ! C � �Bsu
h that if �(v) = (x; �) then for all � 2 C � , �(�v) = (�x; �).Proof: Let �1; : : : ; �n be a basis of E�S(k) su
h that:H�(�i; �j) = �Æij ; H�(�n; �n) = 1Note that if v 2 B then the �n 
oordinate of v (i.e. H�(v; �n)) is non-zero. Thisallows the following 
onstru
tion of � :� : B ! C � �B; � : nXj=1 
j�j 7! (
n; 
1
n ; : : : ; 
n�1
n )One easily 
he
ks that this mapping satis�es the presumed 
onditions. 2Corollary 3.10 The fundamental group of B is isomorphi
 to Z, moreover$ : ��1Æ(exp(2�i�)� id) : C �B ! Bis a universal 
overing of B .Proof: Evident. 2The following theorem is fundamental for the hyperboli
 theory. However, be-
ause the proof of it would be a little distra
ting at this moment, I put it in theseperate se
tion 3.8. 71



Theorem 3.20 In 
ase (M;p) is of hyperboli
 type, the image of the asso
iatedmultivalued mapping Rev(k) is 
ontained in B .Proof: In se
tion 3.8. 2Be
ause eX is simply 
onne
ted, we 
an fa
tor the map fev through the universal
overing of B . In this way, we get a mappingfEV : eX ! C �Bsatisfying fev = $ÆfEV. Now ��(k) indu
es a unique group eG of transformationsof C �B and surje
tive homomorphisms~� : B(M)! eG; pr : eG! ��(k;B(M))su
h that for every g 2 B(M) we obtain the 
ommuting diagram in �gure 3.4.
eXeX C �BC �B BB? ? ?- -- -g ~�(g) ��(k; g)fEVfEV $$Figure 3.4: The eG-a
tion.Denoting the C -a
tion (y; �) 7! (y + x; �) on C � B by x � (y; �), the mappingfEV also satis�es: fEV(x � y) = �x � fEV(y); x 2 C ; y 2 eXLet �1 � � be the union of fa
ets asso
iated to non ellipti
 
onne
ted subdia-grams of (M;p). In parti
ular 0 2 �1. Denote the universal degree p 
overingby �u : Xu(p)! X .Lemma 3.9 The mapping fEV des
ends to a lo
ally biholomorphi
 mapping evuon Xu(p).Proof: The fa
t that Rev(k) maps into B together with theorem 3.13 impliesthat Rev(k) maps some small neighborhood in X of a subregular point in � intosome simply 
onne
ted open sub set of B . (The image 
annot wrap around theorigin.) This implies that fEV is invariant under 
ontinuation along any pj-foldloop around a type j re
e
tion plane. Hen
e fEV des
ends to Xu(p). 272



Corollary 3.11 The homomorphism ~� proje
ts to a homomorphism~� : B(M;p) �= Aut(Xu(p)jX)! eGThis des
ribes the monodromy of evu, i.e.evu(g � x) = ~�(g)evu(x)for all g 2 Aut(Xu(p)jX) and all x 2 Xu(p).Proof: 2Lemma 3.10 The 
overing Xu(p) 
an be embedded in a universally rami�ed
overing ��r : X�r (p) ! C nn�1. Moreover, evu extends to a lo
ally biholomor-phi
 mapping ev�r on X�r (p).Proof: From the ellipti
 
ase we know that universally rami�ed extensions existlo
ally above any point of C nn�1. By using properties of evu we 
an again
on
lude that all these lo
al extensions �t together and obtain X�r (p). By asimilar argument as before, evu extends lo
ally biholomorphi
ally to X�r (p).2We obtained the diagram in �gure 3.5.
X C nn�1Xu(p) X�r (p)eX C �B

-? ?? --




� 6ev�revugEV
Figure 3.5: The hyperboli
 
ase.Before stating the main theorem of this se
tion we investigate what happensnear a fa
et in �1 asso
iated to a 
onne
ted sub diagram of (M;p) of paraboli
type. So suppose (by renumbering) that the sub diagram spanned by the verti
es1; : : : ; j is 
onne
ted and of paraboli
 type.Lemma 3.11 There exists a basis e1; : : : ; ej ; F; f1; : : : ; fn�j�1 of ES(k) su
hthat1. The ve
tor el is a spe
ial eigenve
tor of �(k; gl) for all l.73



2. �(k; g1g2 � � � gj)F = F +2�i � f . Here f is a non zero ve
tor in the C -spanof e1; : : : ; ej su
h that f is �xed by all re
e
tions �(k; g1); : : : ; �(k; gj).3. Every ve
tor fl is also �xed by all these j re
e
tions.Proof: This follows from theorem 3.5 in se
tion 3.2. 2Pi
k a basis of ES(k) as indi
ated and let e�1; : : : ; e�j ; F �; f�1 ; : : : ; f�n�j�1 denotethe dual basis of E�S(k).Lemma 3.12 Take bran
hes of Rev(k) and f su
h that Rev(k; u)(f) = f(u).Then ��(k; g1 � � � gj)Rev(k; u) = Rev(k; u) + 2�i � f(u)F �:In parti
ular f(u) 6= 0 and f(u)H�(`�;Rev(u)) 2 R.Proof: This transformation formula follows from the fa
t that F is the onlybasis element that transforms non trivially under this partial Coxeter element.Be
auseRev(k; u) 2 B we 
on
lude that f(u) 6= 0 for there are no ��(k; g1 � � � gj)-�xed ve
tors in B .Write jj�jj2 for H�(�; �). Then by monodromy invarian
e of H� we getjj��(k; g1 � � � gj)tRev(k; u)jj2 = jjRev(k; u)jj2for all t 2 N. Repeated appli
ation of the transformation formula from thelemma shows that jjF �jj2 = 0 and f(u)H�(F �;Rev(k; u)) 2 R as stated. 2Let p be a point on the fa
et under 
onsideration. Then lo
al monodromy nearp �xes the ve
tor F � on the boundary of B . To study the behaviour of Rev(k)near p we use a lo
al monodromy invariant distan
e fun
tion on B that measuresthe distan
e of a point to F �. We de�ne this distan
e for v 2 B by:Æ(v) = j(F �; v)j2(v; v)Note that it is 
onstant on the line through v. If Æ(v) ! 0 then v ! F � in theproje
tive sense.Let x1; : : : ; xn be lo
al 
oordinates near p su
h that the fa
et is des
ribed bythe equations xj+1 = xj+2 = : : : = xn = 0. Now 
onsiderx1; : : : ; xj ; y1 := xj+1; y2 := xj+2xj+1 ; : : : ; yn�j := xnxj+1as lo
al 
oordinates on the blow up of the fa
et. (So y1 = 0 lo
ally de�nesthe ex
eptional divisor. The argument that follows does not depend on thisparti
ular 
hoi
e of 
oordinates). 74



Lemma 3.13 Ea
h e1; : : : ; ej and f1; : : : ; fn�j�1 extends holomorphi
ally overthe ex
eptional divisor. Moreover, in the 
oordinates x; y we 
an lo
ally writeF (x; y) = (log(y1) +  (x; y))f(x; y)for some holomorphi
  .Proof: Re
all that the exponent along the ex
eptional divisor is 0 with mul-tipli
ity n + 1. By general theory of 
onne
tions with regular singularities weknow that F (x; y)� log(y1)f(x; y); e1; : : : ; ej ; f1; : : : ; fn�j�1extend holomorphi
ally over the divisor y1 = 0. We already know that f doesnot vanish if y1 6= 0. Be
ause the exponent of f along the ex
eptional divisoris 0, we 
on
lude by Hartog's theorem that f is even non vanishing for y1 = 0.Then we 
an 
learly write F in the indi
ated form. 2Theorem 3.21 Let Rev(k) and F be bran
hes on the lo
al 
oordinate neigh-borhood with 
oordinates (x; y) su
h that Rev(k; x; y)(F ) = F (x; y). Then thedistan
e Æ(Rev(k; x; y)) tneds to 0 if y1 tends to 0. Moreover, 
onvergen
e islo
ally uniform w.r.t. the other 
oordinates.Proof: Write Rev(k; x; y) = F (x; y)F � + r(x; y). Then r extends holomorphi-
ally over the divisor y1 = 0. Be
ause f(x; y)H�(F �; r(x; y)) 2 R and f(x; y) isnon vanishing even if y1 = 0, we 
on
lude that H�(F �; r) is also non vanishingfor y1 = 0.Now 
ompute the distan
e (arguments (x; y) are omitted in the right hand side):Æ(Rev(k; x; y)) = jH�(F �; r)j22Re�FH�(F �; r)�+H�(r; r) == jH�(F �; r)j22Re�(log(y1) +  )fH�(F �; r)�+H�(r; r) == jH�(F �; r)j22fH�(F �; r)�log jy1j+ Re( )�+H�(r; r)Now H�(F �; r) 6= 0 so the logarithm in the denominator will 
ause 
onverge ofthis distan
e as stated. 2Note that 
onvergen
e is not only lo
ally uniform, but also does not depend onthe 
hoi
e of the parti
ular bran
hes (Æ is invariant under lo
al monodromy).We 
an now prove the main theorem of this se
tion.75



Theorem 3.22 If every 
onne
ted proper sub diagram of (M;p) is either ellipti
or paraboli
, then the mappingev�r : X�r (p)! C �Bis globally biholomorphi
 and onto.Proof: We need again a eG and C invariant \metri
" on C � B. Consider thePoin
ar�e-Bergman metri
 on B �= C �nB :
oshd([v℄; [w℄) = jH�(v; w)j[H�(v; v)H�(w;w)℄1=2Now extend it trivially on the C -�bres:Æ((w1; b1); (w2; b2)) = d(b1; b2)This \metri
" is 
learly eG and C invariant. De�ne a ball (tube) w.r.t. thismetri
 by: BÆ(�; x) = fy 2 C �B j Æ(x; y) < �gThe proof of the similar theorem in the paraboli
 
ase has to be altered a little.We used that Pd(C n ) is 
ompa
t, but now we possibly left out some points byex
luding �1. To over
ome this problem we 
over C nn�1 in a 
ertain way by
losed sets. Let K1 �� K2 �� K3 �� : : :be a sequen
e of 
losed subsets of C nn�1 su
h that1. Ea
h Kj is invariant under the weighted homogeneous C � a
tion.2. Ea
h set Kj is 
ontained in the interior of Kj+1.Then C �nKj is a 
ompa
t subset of Pd(C n ).Let Xj � X�r (p) be the ��r pre image of Kj . Then there exists a sequen
e ofpositive numbers �1 � �2 � : : : su
h that any point of Xj is �j-wide (w.r.t. ev�r).Suppose 
 : [0; 1℄ ! C � B is su
h that a lo
al inverse � of ev�r near 
(0) 
anbe 
ontinued along 
 upto but not in
luding 
(1). Using �j-wideness on Xjwe 
on
lude: For any j there is a parameter tj 2 (0; 1) su
h that �Æ
(t)=2Xjfor all t 2 (tj ; 1). This implies that ��rÆ�Æ
 
onverges to a fa
et in �1 (i.e.every C � -stable open neighborhood of that fa
et 
ontains a tail of the 
urve).However, if a 
urve in X is su
h that its ��r image tends to a fa
et in �1 theev�r image of the 
urve tends to the boundary of C �B. That is to say, the ev�rimage tends to be at an in�nite distan
e from any point in C �B with respe
tto the given metri
. This is a 
onsequen
e of theorem 3.21. (It is not hard to76



see, using that 
onverge there is lo
ally uniform and Cau
hy's integral theorem,that this behaviour also holds on the ��r pre image of �). In parti
ular the ev�rimage of �Æ
 should tend to the boundary of C �B. But this is just the 
urve
, whi
h tends to 
(1) 2 C �B.This 
ontradi
tion shows that any lo
al inverse of ev�r 
an be 
ontinued through-out C �B. Hen
e ev�r has a single valued holomorphi
 inverse on C �B. Thisshows that ev�r maps X�r (p) globally biholomorphi
ally onto C �B.2Write �=z = �d=a; d; a 2 Z+; g
d(d; a) = 1Corollary 3.12 Any lo
al inverse of the multivalued mapping Rev(k) : X ! Bextends holomorphi
ally to the d-fold 
overing of B , and to no other 
overing ofsmaller degree.Proof: Let � denote the inverse of ev�r . The map ��rÆ� : C � B ! C nn�1 isglobally holomorphi
 on C � B and the lift of a lo
al inverse of Rev(k). Nowby the relation ev�r(x � y) = �x � ev�r(y); x 2 C ; y 2 X�r (p)and the fa
t that for a generi
 point y 2 X�r (p) we have��r (x1 � y) = ��r (x2 � y) , x1 � x2 2 Z=zwe 
on
lude that ��rÆ� is invariant under the a
tion of t 2 Z=z i� t is a multipleof d=z. Hen
e by dividing out the a
tion of dZ=z on C � B, the map ��rÆ�des
ends to a globally holomorphi
 extension of a lo
al inverse of Rev(k) on thed-fold 
overing of B . It is 
lear that the degree d is minimal in this sense. 2Corollary 3.13 If all 
onne
ted sub diagrams of (M;p) are either ellipti
 orparaboli
, then the geometri
 realisation G(M;p) of B(M;p) has the followingpresentation:hr1; : : : ; rn j rpii = e; i 2 f1; : : : ; ng(ri; rj)mij = (rj ; ri)mji ; 1 � i < j � n(r1r2 � � � rn)ha=z = eiProof: The biholomorphi
 equivalen
e of X�r (p) and C �B shows thatB(M;p)=N �= G(M;p)where N denotes the ~� pre image of the kernel ofpr : eG! ��(k;B(M)) �= G(M;p):This kernel 
onsists exa
tly of translations of C � B in the �rst fa
tor over anintegral multiple of 1=z. Relating both C -a
tions on X�r (p) and C � B by the77



transformation formula for ev�r from the proof of 
orollary 3.12, we 
on
ludethat N is generated by (g1g2 � � � gn)ha=z. The 
orollary follows. 2We 
on
lude this se
tion by formulating a Chevalley theorem for hyperboli
re
e
tion groups.A holomorphi
 fun
tion f : C �B ! C with the propertyf(x+ t�z ; b) = e2�itf(x; b); for all t 2 C and (x; b) 2 C �B
an be 
onsidered as a global se
tion in a line bundle L overB. The group eG a
tsnaturally on L and the kernel of the proje
tion of eG onto G(M;p) a
ts trivially.Hen
e L is a G(M;p)-homogeneous bundle. Consider the graded algebraA :=Mn�0�(B;L
n)and let AG denote the sub algebra of G(M;p)-invariant elements.Theorem 3.23 The algebra AG of invariant se
tions is isomorphi
 to a poly-nomial algebra C [�1 ; : : : ; �n℄.Proof: Let 
ev : C nn�1 ! C �B be a lifting of Rev(k). Let � = (�1; : : : ; �n) :C � B ! C nn�1 be the inverse of 
ev. Clearly the 
oordinates �1; : : : ; �nare algebrai
ally independent over C . Using homogeneity of the evaluationmapping one dedu
es that �j is a global invariant se
tion in L
(dj=z). Nowlet f 2 �(B;L
n) be an invariant se
tion (as a fun
tion on C � B). The
omposition fÆ
ev is invariant under monodromy and weighted homogeneous ofdegree n. Hen
e this 
omposition extends to a polynomial on C n . This impliesthat f is a polynomial in �1; : : : ; �n. 2A well known result of Selberg [Se, lemma 8℄ implies that G(M;p) has a normalsubgroup � of �nite index that a
ts freely on the 
omplex ball B. On thesmooth variety �nB one 
an introdu
e a line bundle L as above, homogeneouswith respe
t to the �nite group G(M;p)=� generated by re
e
tions. Then one
an prove a Chevalley like theorem on the invariant se
tions in the algebragenerated by �(�nB;L). This is similar to the result of Milnor in [N℄ on the
omplex dis
 (one dimensional hyperboli
 spa
e).3.8 A proof of theorem 3.20In this se
tion we present a proof of theorem 3.20. Let e1; : : : ; en be a basis of ESas in se
tion 3.3. Denote the dual se
tions in E�S by e�j . De�ning H�(e�i ; e�j ) :=H�ij (as in de�nition 3.12) provides a hermitean stru
ture on the subbundle of78



E�S over the real valued multipli
ity fun
tions K 0R. To prove theorem 3.20 itsuÆ
es to show that H�(Rev(k);Rev(k)) > 0on X for hyperboli
 k.Now let � : C 2 ! V be an inje
tive linear mapping su
h that �(C 2nf0g) interse
tsevery re
e
tion plane only in sub regular points. (In parti
ular, the � image is not
ontained in any re
e
tion plane.) By Chevalley proje
tion we get a weightedhomogeneous mapping �P := PÆ� into C n su
h that its image interse
ts �nf0gonly in subregular points. Let a1; : : : ; am be the lines in C 2 whi
h �P maps into�. De�ne a real valued fun
tion � on K 0R� C 2nfa1; : : : ; amg by:�(k; x) := H�(Rev(k; �P (x));Rev(k; �P (x)))Note that by monodromy invarian
e ofH� this de�nes a single valued 
ontinuousfun
tion. By the 
hara
terization in theorem 3.13 we 
on
lude that � extendsto a 
ontinuous fun
tion (also 
alled �) on K 0R� C 2 . Also note that �(k; �) ishomogeneous (of degree �(k)) for ea
h k.We now investigate if this � 
an take on negative values. First observe that�(k; x) > 0 if �(k) � 0. De�ne N by:N := f(k; x) 2 K 0R� C 2 j �(k; x) � 0g(The set where � takes on non positive values.) Then N is 
losed. Be
ause N isinvariant under s
alar multipli
ation in the se
ond fa
tor and P(C 2 ) is 
ompa
t,we 
on
lude that the proje
tion NK of N on K 0R along C 2 is also 
losed.Now suppose k 2 �NK . Then �(k; �) � 0 and �(k; xo) = 0 for some xo 2C 2 . Suppose that �(k) > 1 � m2. By a previous remark we ne
essarily have�(k) < 0. Be
ause Rev(k) is lo
ally biholomorphi
 on X and �P (C 2nf0g) is not
ontained in a single (weighted) C � -orbit, we 
on
lude that �(k; x) = 0 impliesthat x 2 a1 [ : : : [ am. Hen
e �(k; �) vanishes along some line, a1 say.By theorem 3.13 we know that at a non zero point xo in a1 we 
an lo
ally splitRevP := Rev(k; �P (�)) in a singular and a holomorphi
 part:RevP = Revs +RevhIn parti
ular1. H�(Revs;Revh) = 02. Revh is holomorphi
 in a neighborhood of xo 2 a1.3. If �P (xo) lies on a type j re
e
tion plane, then Revs is a spe
ial eigenve
torof ��(k; gj) on E�S(k) (if non zero).4. limx!xo Revs(x) = 0 79



It is a 
onsequen
e of property 3 that H�(Revs;Revs) � 0. (H� is negative onall spe
ial eigenve
tors of the generating re
e
tions.) Near xo this yields:0 � �(k; �) = H�(Revs;Revs) +H�(Revh;Revh) �� H�(Revh;Revh)By the maximum prin
iple (se
tion 1.1) we 
on
lude thatH�(Revh;Revh) > 0on a neighborhood of xo. This is in 
ontradi
tion with the fa
t that Rev(k; xo) =0. We 
on
lude that if k 2 �NK then �(k) � 1 �m2. Now the subset of K 0Rfor whi
h �(k) > 1 �m2 is 
onne
ted and not 
ontained in NK . We 
on
ludethat it is disjoint from NK . This shows that �(k; x) > 0 if �(k) > 1 �m2. Inparti
ular we 
on
lude that on the �P image of C 2 , restri
ted evaluation mapsinto B . Theorem 3.20 now follows by the remark that by varying the map �, theimages of �P 
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Chapter 4Root systems and varieties
4.1 Introdu
tionIn 
hapter 3 a hypergeometri
 system related to a normalized root system Rwas introdu
ed. It is a lo
al system or, in Deligne's terminology, a fun
tionof Nilsson 
lass on the 
omplement of the dis
riminant of R. This systemdepends on a multipli
ity parameter k and some 
onditions on this parameterwere introdu
ed that will assure that the hypergeometri
 system has a dis
retemonodromy group. One of these 
onditions is that all proper paraboli
 rootsubsystems of R with the restri
ted multipli
ity parameter should have a non-negative exponent.Studying [DM℄ shows that this 
ondition is 
ertainly not ne
essary in general,though it marks an important border in the theory. One should 
ompare thiswith the theory of real hyperboli
 re
e
tion groups that a
t dis
retely and with
o�nite volume on real hyperboli
 spa
e. There is a 
onsiderable di�eren
e ine�ort needed to 
lassify su
h groups with at most paraboli
 subgroups (as in[H℄) and the general 
ase [V℄.The presented work is mainly 
on
erned with 
onstru
tions of varieties anddes
ribing their properties. First a \Cremona" variety of a restri
ted Coxeterarrangement is introdu
ed. Then we generalize the appearan
e of Geometri
Invariant Theory for the root system An, present in the work of Deligne andMostow [DM℄, to arbitrary root systems. This will result in a better under-standing of hypergeometri
 systems asso
iated to root systems with a properroot subsystem of hyperboli
 type.Unfortunately, there remain some questions in the \invariant theory" for ar-bitrary root systems. Therefore the �nal main results are still 
onje
tural innature. 82



The main 
onje
ture of this 
hapter 
an be formulated as follows. Let k be amultipli
ity parameter on an irredu
ible root system R su
h thatk� = 12 � 1p�for p� 2 N�2 and � 2 R.Conje
ture 4.1 Suppose that �(R; k) 2 (1�m2; 0) where m2 denotes the se
-ond smallest exponent of R, i.e. �(R; k) is of hyperboli
 type. Suppose moreoverthat for any irredu
ible paraboli
 root subsystem R0 � R of rank rk(R)� 1 su
hthat �(R0; k) < 0 the following integrality 
ondition holds:�"R0=�(R0; k) 2 N�1 :Here "R0 2 f1; 2g and it equals 2 exa
tly if W (R) 
ontains an element w su
hthat �w is a re
e
tion �xing R0. Then the monodromy group of the hypergeo-metri
 system ES(k) (
f. se
tion 3.3) is dis
rete.This results in the tables of 
hapter 5.4.2 Coxeter arrangementsIn this se
tion we introdu
e the notion of a Coxeter arrangement. Let R be anormalized irredu
ible root system of full rank in an n-dimensional Eu
lideanspa
e (E; (�; �)). De�ne V := C 
E and extend (�; �) bilinearly to V . For a subsetU � E we de�ne VU := spanC (U) and V U := V ?U . In parti
ular V = VU � V U .A root system R0 � R is 
alled paraboli
 if R0 = VR0\R. For R0 � R a paraboli
root subsystem we de�ne:R(R0; R) := fS � R j R0 � S and S is paraboli
gS(R0; R) := fS 2 R(R0; R) j rk(S) = rk(R0) + 1gIf R0 is irredu
ible we de�neRo(R0; R) := fS 2 R(R0; R) j S is irredu
iblegSo(R0; R) := fS 2 S(R0; R) j S is irredu
iblegN(R0; R) := #So(R0; R)Example: The root system of type E8 
ontains D5 as an irredu
ible paraboli
root subsystem. In this 
ase So(D5; E8) 
ontains four systems of type E6 andthree of type D6. Therefore N(D5; E8) is equal to seven.83



Fix a root subsystem R0 2 Ro(;; R) su
h that R0 6= ;. For every � 2 RnR0the linear spa
e �? \ V R0 is of 
odimension one in V R0 . Two su
h roots 
anhave the same orthoplement in V R0 even if they are linearly independent. Take� 2 RnR0 and 
onsider the setf� 2 R j �? � �? \ V R0g:This is a paraboli
 root system of rank rk(R0) + 1 
ontaining R0. It is eitherirredu
ible or of the form R0 [ f��; �g. All roots � for whi
h this system isredu
ible form a subset (R0)?? of (R0)?. In fa
t (R0)?? is a (not ne
essarilyparaboli
) root subsystem of R. For example if R = Bn and R0 = Bm for somem � n� 4 then (R0)?? is of type Dn�m.The hyperplanes �? \ V R0 for � 2 RnR0 are exa
tly indexed by S(R0; R).De�nition 4.1 The spa
e V R0 strati�ed by the interse
tion stru
ture of all hy-perplanes V S, S 2 S(R0; R) is 
alled a restri
ted Coxeter arrangement [OT℄.Let us study the interse
tion stru
ture of all hyperplanes. Take in
lusion as apartial ordering on R(R0; R).Lemma 4.1 In R(R0; R) any two elements S; S0 have a least upper bound S_S0and a greatest lower bound S ^ S0.Proof: Let S; S0 2 R(R0; R) then 
learly (VS + VS0) \ R is a paraboli
 rootsubsystem 
ontaining both S and S0. Moreover any upper bound for S and S0must 
ontain (VS + VS0) \R be
ause it is paraboli
. Be
ause R(R0; R) is �niteS and S0 will also have a greatest lower bound.2Lemma 4.2 If S 2 R(R0; R) then T 7! T _ S de�nes a mapS(R0; R)nS(R0; S)! S(S;R0):Moreover, this map is onto but not ne
essarily inje
tive.Proof: If T 2 S(R0; R)nS(R0; S) then indeed rk(T _ S) = rk(S) + 1. IfS0 2 S(S;R) and � 2 S0nS then T := (VR0 + C�) \ R is an element ofS(R0; R)nS(R0; S) and S0 = T _ S. Take as an example R = B4, R0 = A1,S = B2. Then one 
he
ks that this map is not inje
tive.2Corollary 4.1 Any element of R(R0; R) is the least upper bound of a subset ofS(R0; R).Proof: Indu
tion on the rank. If S0 2 R(R0; R), S0 6= R0 then S0 
ontains aparaboli
 root subsystem S of 
orank one in S0. By indu
tion and lemma 4.2we �nd a subset of S(R0; R) for whi
h S0 is the least upper bound. 284



Corollary 4.2 The set of all interse
tions of hyperplanes V S in V R0 , S 2S(R0; R), partially ordered by reversed in
lusion is isomorphi
 to R(R0; R) (aspartially ordered sets).Proof: This follows from 
orollary 4.1 and the fa
t that V S \ V S0 = V S_S0 . 2The hyperplanes V S , S 2 So(R0; R) play a spe
ial role in the next se
tion. Toprove some properties of the interse
tion stru
ture of these hyperplanes we needthe following lemma.Lemma 4.3 If a root subsystem S � R is irredu
ible and A � VS is a properlinear subspa
e, then S � VSnA.Proof: If � 2 A\ S then SnA is invariant under re
e
tion in �. Moreover if �is not perpendi
ular to SnA then it is 
ontained in VSnA. Hen
e VS = VSnA�V 0with V 0 = SpanC f� 2 S j � ? SnAg. By irredu
ibility of S we have V 0 = f0g.2Lemma 4.4 Lemma 4.1, lemma 4.2, 
orollary 4.1 and 
orollary 4.2 still holdif one repla
es R by Ro and S by So.Proof: If S; S0 2 Ro(R0; R) then S \ S0 6= ; and hen
e S _ S0 is irredu
ibleproving lemma 4.1. If S 2 Ro(R0; R) and S0 2 So(S;R) then S0nS is notperpendi
ular to R0 by lemma 4.3 and the fa
t that R0 � S0. Hen
e for � 2 S0nSthe paraboli
 system (VR0+C�)\R is irredu
ible proving lemma 4.2. Corollary4.1 follows from the remark that an irredu
ible paraboli
 root system 
ontainsan irredu
ible paraboli
 root subsystem of 
orank one. Corollary 4.2 is then
lear. 2Remark 4.1 If S; S0 2 Ro(R0; R) then the greatest lower bound of S and S0 inR(R0; R) need not be irredu
ible. The irredu
ible 
omponent 
ontaining R0 isthe greatest lower bound in Ro(R0; R). So the exa
t meaning of S ^ S0 dependson the 
ontext.For S 2 R(R0; R) we denote the 
omplement of all V S0 in V S , S0 2 S(S;R), byHS(R) or HS . Likewise for S 2 Ro(R0; R) we denote the 
omplement of all V S0in V S , S0 2 So(S;R) by HSo (R) or HSo .Let the subgroupW (R0; R) ofW (R) be de�ned as the set of elements w 2W (R)su
h that wjVR0 = �idVR0 .Lemma 4.5 The group W (R0; R) is generated by re
e
tions keeping R0 point-wise �xed and at most one element w� 2 W (R) su
h that w�(v) = �v for allv 2 VR0 . 85



Let w� 2 W (R0; R) be any element su
h that w�(v) = �v for all v 2 VR0 (ifsu
h an element exists). It is well known that the group of elements �xing R0pointwise is generated by re
e
tions. Take w 2 W (R0; R) and suppose thatw(v) = �v for all v 2 VR0 . Then ww� �xes R0 pointwise. Hen
e w = ww� �w�1�so w is a produ
t of re
e
tions �xing R0 and w�1� . This proves the lemma. 2Note that V R0 is stable under W (R0; R). Therefore the following de�nition of aW (R0; R)-a
tion on V R0 might be unexpe
ted.De�nition 4.2 De�ne a W (R0; R)-a
tion on V R0 byw:v = � w(v) if w �xes R0�w(v) otherwisefor any w 2 W (R0; R) and v 2 V R0 .In se
tion 4.5 it will be
ome 
lear why this is a natural a
tion for our purposes.Lemma 4.6 If R is not of type Dn (n odd) nor of type E6 then for any w 2W (R0; R) there exists a ~w 2 W (R) �xing R0 su
h that w:v = ~w(v) for allv 2 V R0 . In this 
ase W (R0; R) a
ts freely on HR0 .Proof: If R is not of type Dn (n odd) or E6 then either w(v) = v for allw 2 W (R0; R) and v 2 VR0 or �1 2 W (R0; R). In the latter 
ase one 
an take~w = �w. Now the group of elements �xing R0 a
ts freely on HR0 . 2Lemma 4.7 If R is of type E6 and w 2 W (R0; E6), v 2 HR0 are su
h thatw:v = v then the �xed points of w on V R0 (with respe
t to the dot a
tion) forma linear spa
e of 
odimension at least two.Proof: If w 2W (R0; E6) �xes a linear subspa
e of V R0 of 
odimension one theneither w or �w is a re
e
tion. In the �rst 
ase w has no �xed points on HR0 byde�nition. If �w would be a re
e
tion then w �xes a one dimensional fa
et ofE6 in V R0 . Hen
e �1 would be an element of the stabilizer of this fa
et. Nowsu
h a stabilizer is the re
e
tion group of a root system of one of the followingtypes: D5, A1 �A4, A2 �A2 �A1 or A5. In parti
ular �1 is not an element ofsu
h a stabilizer and hen
e �w 
an not be a re
e
tion. 2Corollary 4.3 If R0 � E6 is of rank four thenW (R0; R) a
ts freely on HR0(E6).Proof: A non trivial linear subspa
e in V R0 has 
orank one. 2Remark 4.2 Unfortunately an analogue of lemma 4.7 does not hold if R is oftype Dn (n odd). Consider R0 of type Am, m � n�2. Then the longest element86



in Dn�1 � Am �xes a subspa
e of HAm of 
odimension one that is not 
ontainedin any of the spa
es HS, S 2 S(Am; Dn).We ex
lude the possibility for R to be of type Dn (n odd) in the rest of this
hapter. (This is really not a bad restri
tion be
ause these 
ases are essentially
overed by type Bn).4.3 The Cremona 
oneIn this se
tion R has rank n and is not of type Dn (n odd) and R0 is again a�xed non-empty paraboli
 irredu
ible root subsystem of R. Certain varietiesasso
iated to Coxeter arrangements are 
onstru
ted. We use hypergeometri
fun
tions asso
iated to R to study rami�ed 
overings of su
h varieties moduloa W (R0; R) a
tion.For all S 2 So(R0; R) let �S 2 E be a ve
tor in V R0\VS normalized by (�S ; �S) =2. All ve
tors �S together span V R0 be
ause R is the least upper bound forSo(R0; R). The linear form (�; �S) on V R0 is denoted as ��S . Let yS , S 2 So(R0; R)be 
oordinates on CN(R0 ;R). De�ne a map 
R0;R : HR0o ! CN(R0 ;R) by
 = 
R0;R : v 7! ( 1(v; �S) )S2So(R0;R):Note that 
 is a smooth inje
tive homogeneous map of degree �1. De�ne�o � V R0 � CN(R0 ;R) by�o := f(v; y) j v 2 HR0o and 
(v) = �y for some � 2 C �g:Then �o is C � -invariant in both fa
tors separately. Let � � V R0 � CN(R0 ;R) bethe topologi
al 
losure of �o. For a set Y � V R0 we de�ne a set�(Y ) := fy 2 CN(R0 ;R) j (v; y) 2 � for some v 2 Y g:Lemma 4.8 For every set Y � V R0 the set �(Y ) is C -invariant. If moreoverC Y is 
losed then �(Y nf0g) is also 
losed. In parti
ular �(fyg) = �(fC �yg) is
losed for all y 2 V R0 .Proof: Left to the reader. 2Now �(f0g) is exa
tly the 
losure of 
(HR0o ) in CN(R0 ;R). We denote this 
losureby Cone(R0; R) and 
all it the Cremona 
one of the arrangement of R0 in R.Remark 4.3 In this way � 
an be viewed as a birational map between P(V R0)and P(Cone(R0; R)). 87



Example: If R = An and R0 = Am for some 1 � m < n then So(Am; An)
ontains exa
tly n�m root systems of type Am+1. In this 
ase Cone(Am; An)equals C n�m . More generally Cone(R0; R) = CN(R0 ;R) exa
tly if N(R0; R) =rk(R)� rk(R0).Note that �(HRo ) = �(f0g) equals Cone(R0; R) (by de�nition). More generallywe have the following.Theorem 4.1 For S 2 Ro(R0; R)nfR0g de�ne �S := �(HSo ) and take �R0 :=f0g. Take S; S0 2 Ro(R0; R) su
h that S 6= R0. Then for any v 2 HSo we have�(fvg) = �S and as a variety �S is isomorphi
 to Cone(R0; S). The interse
tion�S \ �S0 exa
tly equals �S^S0 (irredu
ible greatest lower bound).Proof: Take v 2 HSo . Let U1 � HSo be a neighborhood of v su
h that alsoU1 � HSo . Let U2 � VS \ V R0 be a neighborhood of 0 su
h that U2 is 
ompa
t.Let " 2 C � be small and u1 2 U1, u2 2 U2 su
h that (u2; �T ) 6= 0 for allT 2 Ro(R0; S), i.e. u2 2 HR0o (S). Then (u1 + "u2; 
("�1u1 + u2)) 2 �o. The
oordinate yT of 
("�1u1 + u2), T 2 So(R0; R), is given by:yT = 8>><>>: 1(u2; �T ) if T 2 So(R0; S)"(u1; �T ) + "(u2; �T ) otherwiseNow let " tend to 0. Then the 
oordinates yT for T=2So(R0; S) tend to 0 uniformlyin u1; u2 while those for T 2 So(R0; S) are uniformly bounded below. This showsthat if y 2 �(fvg) then its 
oordinate yT 
an be non-zero only if T 2 So(R0; S).On the other hand if y 2 Cone(R0; R) and all 
oordinates yT are zero for T 2So(R0; R)nSo(R0; S) then it is not hard to 
he
k that y is 
ontained in the 
losureof f( 1(u2; �T ) )T2So(R0;S) j u2 2 HR0o (S)gembedded in CN(R0 ;R). So �S is isomorphi
 to Cone(R0; S) and �S \�S0 equals�S^S0 . 2For S 2 Ro(R0; R) we de�ne GS as the 
omplement of all �S0 in �S , S0 2Ro(R0; S)nfSg. It is the 
R0;S-image of HR0o (S) embedded in Cone(R0; R).Theorem 4.2 Suppose y 2 GS for S 2 Ro(R0; R) and let m = rk(S)� rk(R0),i.e. m = dim(�S). Then y has a neighborhood in Cone(R0; R) whi
h is isomor-phi
 to a produ
t �m � (�N(S;R) \ Cone(S;R))where � � C denotes the unit dis
. In this neighborhood GS 
orresponds to�m �f0g. In parti
ular GS is smoothly embedded in Cone(R0; R) if and only ifN(S;R) equals rk (R)� rk(S). 88



Proof: Fix v1 2 HSo and v2 2 HR0o (S). Let U2 � HR0o (S) be a neighborhood ofv2 and Æ > 0 su
h that j(u; �T )j � Æ�1j(v1; �T )jfor all u 2 U and T 2 So(R0; R)nSo(R0; S).The following formulas are inspired by those for yT above. Take (u; x) 2U � (Æ�N(S;R) \ Cone(S;R)) and de�ne the point y(u; x) 2 CN(R0 ;R) by its
oordinates:yT (u; x) := 8>><>>: 1(u; �T ) if T 2 So(R0; S)xT_S(v1; �T ) + xT_S(u; �T ) otherwise ; T 2 So(R0; R)Then one 
an 
he
k that y(u; x) 2 Cone(R0; R). Indeed if we take x 2 Cone(S;R)given by xT_S := (v1; �T )"(u1; �T )for T 2 So(R0; R)nSo(R0; S) and some u1 2 HSo (this x is well de�ned) theny(u; x) is just 
("�1u1 + u). The map (u; x) 7! y(u; x) is biholomorphi
 onU � (Æ�N(S;R) \ Cone(S;R)). Moreover, y(u; x) 2 �(HSo ) pre
isely if x = 0.Re
all that N(S;R) = rk(R)� rk(S) implies Cone(S;R) = CN(S;R) . If N(S;R)is greater however then 0 is a singular point of Cone(S;R). The theoremfollows.2If w 2 W (R0; R) then w:�S = �(w; S)�w:S for some �(w; S) 2 f�1; 1g. De�nea W (R0; R)-a
tion on CN(R0 ;R) by:W (R0; R) 3 w�1 : (yS)S2So(R0;R) 7! (�(w; S)yw:S)S2So(R0;R)So W (R0; R) a
ts by sign 
hanges and permutations of the 
oordinates. Theimportant property of this a
tion is that it makes 
 a W (R0; R)-equivariantmap. Hen
e � is stable under the diagonalW (R0; R)-a
tion on V R0 � CN(R0 ;R).In parti
ular the a
tion on CN(R0 ;R) restri
ts to an a
tion on Cone(R0; R). Inall 
ases ex
ept possibly if R is of type E6 this a
tion will be free on 
(HR0)(lemma 4.6) and we 
all this set the regular part of Cone(R0; R).Re
all that GS has 
odimension one in Cone(R0; R) pre
isely if rk(S) = n � 1.In this 
ase GS is smoothly embedded.Theorem 4.3 Suppose S 2 Ro(R0; R) has rank n�1. An element w 2W (R0; R)a
ting non trivially �xes �S pointwise if and only if w a
ts as a re
e
tion on V R0�xing VS (by the dot a
tion). In parti
ular it is an involution on Cone(R0; R).Proof: By invarian
e of � and theorem 4.1 we 
on
lude that V S and hen
e VS\V R0 are stable under w. Now GS 
orresponds to HR0(S) by the w-equivariant89



map 
R0;S . In parti
ular GS is pointwise �xed if and only if VS\V R0 is pointwise�xed. Be
ause w is non-trivial it must a
t as a re
e
tion.2Next we study the roots in (R0)?? and the �xed point sets on Cone(R0; R) ofthe 
orresponding re
e
tions. If � 2 (R0)?? let �� be the set of �xed points onCone(R0; R) of the re
e
tion s� with root �.Lemma 4.9 Suppose � 2 (R0)?? and S 2 Ro(R0; R). The set �� interse
ts GSif and only if S is stable under the re
e
tion s�.Proof: Clearly W (R0; R) permutes the sets GS0 , S0 2 Ro(R0; R). In parti
ularif s� has a �xed point on GS then GS is stable under s�. By invarian
e of �this implies that HSo and hen
e S is s�-stable. If � ? S then �S is pointwise�xed by s�. If � 2 S then s� has a �xed point on HR0o (S) and hen
e on GS(essentially the 
R0;S-image of the former set). 2For an arbitrary 
olle
tion of su
h re
e
tions the following holds.Theorem 4.4 Let A � (R0)?? and S 2 Ro(R0; R). The re
e
tions s�, � 2 Ahave a 
ommon �xed point on GS if and only if the following 
onditions aresatis�ed.1. The root system S is stable under every re
e
tion s�, � 2 A.2. The root system R0 is an orthogonal 
omponent of the smallest element inR(R0; R) 
ontaining A \ S.Proof: Condition one states that every s� has a �xed point on GS by theprevious lemma. Let T 2 R(R0; R) be the smallest element 
ontaining A \ S.Let To be the irredu
ible 
omponent of T 
ontaining R0. Clearly To 2 Ro(R0; S).Then the 
ommon �xed points of s�, � 2 A \ S on V R0 are 
ontained in V To .Moreover HR0o (S) 
ontains 
ommon �xed points if and only if To = R0. Now�xed points on GS 
orrespond to �xed points on HR0o (S). The theorem follows.2In the theory of groups generated by re
e
tions of some ve
tor spa
e it is wellknown that the stabilizer of any point is again generated by re
e
tions. Thisfails in general for the a
tion of W (R0; R) on Cone(R0; R).Theorem 4.5 Suppose S 2 Ro(R0; R) and let y 2 GS. Suppose the pair (R0; R)is not any of the following: (A1; Ap) with p � 3 odd, (Ap; Dq) with p � q � 2,(Aj ; E6) with j 2 f1; 2; 3g. Then the stabilizer of y in W (R0; R) is the dire
tprodu
t of W (S;R) and the subgroup of W (S) generated by all re
e
tions �xingR0 and y.Proof: Let w 2 W (R0; R) stabilize y 2 GS . Then S is w-stable. Let " 2 f�1; 1gbe su
h that w(v) = "v for all v 2 VR0 . Then "w(v) = v for all v 2 VR0 and90



some non-zero v 2 HR0o (S) \ E. Let C be a 
hamber of S in VS \ E su
hthat C interse
ts the �xed points of "w in a fa
et of highest possible dimension.Be
ause "w(C) is again a 
hamber and "w(C)\C 6= ; there is a g 2 W (S) su
hthat "gw(C) = C. Moreover every �xed point of "w on VS is �xed by g. Inparti
ular g is a produ
t of re
e
tions in W (S) �xing R0 and y.The transformation "gw indu
es a diagram automorphism of S. If S admits nonon-trivial diagram automorphisms then gw 2W (S;R).Remains to 
onsider the 
ases where S is of type Ap, Dq or E6 with a non-trivialdiagram automorphism. In these 
ases the automorphism is an involution andthe roots that are �xed form a root subsystem of type Adp=2e1 , Dq�1 and D4respe
tively. This restri
ts the possibilities to (A1; Ap), (Ap; Dq), (Dp; Dq),(A1;2;3; E6) and (D4; E6). The 
ondition that the involution should have �xedpoints in HR0o (S) and some expli
it 
omputations yield the list stated in thetheorem. 2In the remainder of this se
tion we will always assume that the pair (R0; R) isnone of those listed in theorem 4.5. In parti
ular this implies that W (R0; R) a
tsfreely on HR0 as the only possible ex
eptions would be (Aj ; E6), j 2 f1; 2; 3g.To study the stru
ture of Cone(R0; R) modulo theW (R0; R)-a
tion we introdu
ea fun
tion of Nilsson 
lass on the regular part 
(HR0) of Cone(R0; R) related tothe hypergeometri
 fun
tion of the root system R.Without loss of generality we 
an assume that R0 is generated by the n�m sim-ple roots �1; : : : ; �n�m 2 R for somem � 1. Let v be a regular point in E+ withorbit W (R)v. Then the hypergeometri
 system EW (R)v(k) has a m-dimensionalsubspa
e of ve
tors kept �xed by the re
e
tions �(k; g1); : : : ; �(k; gn�m). More-over, any germ 
omponent in Ev(k) of su
h a �xed ve
tor will extend holomor-phi
ally over any point in the spa
e HR0 � V . Let x 2 HR0 \E. By restri
tionwe get a m-dimensional ve
torspa
e Cx(k) of germs of multivalued fun
tions onHR0 at the point x. Re
all that for a multipli
ity parameter k on R the exponentof R is de�ned as �(R; k) := 1� 1n X�2R k� 2 Z[k�℄:We will need the following remarkable equality between exponents of rootsystems whi
h plays a 
ru
ial role in the sequel.Theorem 4.6 For any irredu
ible root system R and any paraboli
 irredu
ibleroot subsystem R0 the following equality holds:XS2So(R0;R)(�(S; k)� �(R0; k)) = �(R; k)� �(R0; k)Proof: Unfortunately the only proof I know at the moment is by an elaborate
ase by 
ase veri�
ation using tables of the positive roots for all root systemsR. 2 91



To obtain a Nilsson 
lass fun
tion on 
(HR0) we want to use the map 
 to pushforward the system Cx(k) on HR0 . However, it turns out to be more 
onvenientto push forward a slightly altered system on HR0 in order to obtain ni
e lo
alproperties on 
(HR0). We obtain this altered system Caltx (k) by tensoring Cx(k)with the one dimensional spa
e spanned by a germ of the multivalued fun
tionYS2So(R0;R)(��S)�(R0;k)��(S;k)at x 2 HR0 . The following lemma states some important properties of thissystem.Lemma 4.10 1. Any germ in Caltx (k) is homogeneous of degree �(R0; k).2. For any w 2W (R0; R) there is a 
anoni
al isomorphism between the ve
torspa
es Caltx (k) and Caltwx(k). (Compare with the spa
es Ev(k)).3. For � 2 (R0)?? the system Caltx (k) has exponents 0 and 1 � 2k� withmultipli
ities m� 1 and 1 respe
tively along �? \ V R0 .4. Suppose S 2 Ro(R0; R) and rk (S) = n � 1. Then the lo
al exponentsalong HS are �(R0; k) and �(R0; k)� �(S; k) with multipli
ities m� 1 and1 respe
tively.Proof: Clearly a germ in Caltx (k) is homogeneous of degree�(R; k) + XS2So(R0;R)(�(R0; k)� �(S; k)):Property 1 follows by using theorem 4.6. Translation of a germ in Caltx (k) towx 2 HR0 yields a germ in Caltwx(k) by the properties of the system Ev(k). Thisproves 2. Let j > n � m be su
h that �j 2 V R0 . Then �(k; gj) 
ommuteswith all �(k; gi), i � n � m, and hen
e any spe
ial eigenve
tor of �(k; gj) is�(k; gi)-invariant for i � n � m. This proves 3. Suppose S is as in 4. Wemay assume that S is generated by the simple roots �1; : : : ;
�j ; : : : ; �n for somej > n �m. The element �(k; g1 � � � bgj � � � gn)h(S), h(S) the Coxeter number ofW (S), 
ommutes with all �(k; gi), i � n � m. Hen
e an eigenve
tor of thiselement with eigenvalue one (unique upto s
alar multiples) is kept �xed by all�(k; gi), i � n�m. So the exponents along HS are�+ XT2So(R0;S)(�(R0; k)� �(T; k)); � 2 f�(S; k); 0gwith multipli
ities m � 1 (� = �(S; k)) and 1 (� = 0). Property 4 follows byapplying theorem 4.6. 2 92



Now push forward the system Caltx (k) by 
 to obtain the spa
e C
one
(x) (k) of germsat y := 
(x) 2 
(HR0). For this system one has the following (
ompare withthe previous lemma).Lemma 4.11 1. Any germ in C
oney (k) is homogeneous of degree ��(R0; k).2. For w 2 W (R0; R) there is a 
anoni
al isomorphism of the ve
tor spa
eC
oney (k) onto C
onew:y (k).3. Let � 2 (R0)??. The exponents of C
oney (k) along the �xed points �� of there
e
tion s� are 0 and 1�2k� with multipli
ities m�1 and 1 respe
tively.4. Let S 2 Ro(R0; R) su
h that rk(S) = n � 1. The exponents of C
oney (k)along GS are 0 and ��(S; k) with multipli
ities m� 1 and 1 respe
tively.Proof: The map 
 is homogeneous of degree �1, hen
e the degree of C
oney (k)equals minus the degree of Caltx (k). This proves 1. Properties 2 and 3 are 
lear.Suppose S is as in 4. Take v 2 HS and � 2 V R0 su
h that v+�� 2 HR0 for small� 6= 0. The exponents in property 4 
an be derived by 
onsidering the smooth
urve 
("�1v+ �), " small, passing through GS together with the exponents andhomogeneous degree of Caltx (k). 2Let A be the algebra of W (R0; R)-invariants in the 
oordinate ring of the aÆnevariety Cone(R0; R). Let A+ be the maximal ideal of elements with vanishing
onstant term. Take Cone(R0; R)=W (R0; R) := Spe
(A) and think of this as aweighted homogeneous aÆne variety. Then A+ 2 Spe
(A) 
orresponds to 0 inthis variety and we 
all this the origin of Cone(R0; R)=W (R0; R).For a homogeneous set U we write �W (U) for the image of �(U)=W (R0; R)in Spe
(A). The spa
e Spe
(A) has a natural strati�
ation indu
ed by theinterse
tion stru
ture of the 
odimension one subspa
es �WS := �S=W (R0; R)and �W� := ��=W (R0; R). Here S ranges over the elements in Ro(R0; R) of rankn� 1 and � ranges over (R0)??.Let Y � 
(HR0) denote the W (R0; R)-orbit of y. As in the 
ase of the systemEv(k), the system C
oney (k) gives rise to a m-dimensional system on �W (HR0) (asmooth subvariety) by property 2. Denote this system by C
oneY (k). Again, mon-odromy indu
es a representation �� of the fundamental group �1(�W (HR0); Y )on the dual C�Y (k) of C
oneY (k).Lemma 4.12 Assume that the parameter k 2 K 0>0 is 
hosen in su
h a waythat both �(R; k) and �(R0; k) are in the hyperboli
 range. Then there exists apositive de�nite ��-invariant Hermitian form on C�Y (k).Proof: The m-dimensional subspa
e of EW (R)v(k) �xed by the �rst n � mre
e
tions �(k; gj) is the orthoplement of the span of spe
ial eigenve
tors e1(k)93



upto en�m(k) with respe
t to the monodromy invariant hyperboli
 form. Byassumption the form restri
ted to this span is also hyperboli
 and hen
e it isde�nite on the orthoplement. It is also invariant on the altered system and onits push forward. This proves the lemma. 2We are now in a position to prove the main theorem of this se
tion. SupposeS 2 Ro(R0; R) has rank n � 1 and � 2 (R0)??. De�ne p� := 2=(1 � 2k�) andpS := �z=�(S; k) where z is either 1 or 2 depending on whether or notW (R0; R)
ontains an element that a
ts as an involution �xing GS .Theorem 4.7 Assume that both �(R; k) and �(R0; k) are in the hyperboli
 range(as in lemma 4.12). Assume p� 2 N�2 and pS 2 N�1 for all p� and pS de�nedabove.Let Xu(p)! �W (HR0) be the universal Galois 
overing of lo
al degrees p� andpS along �W� and �WS respe
tively. Then Xu(p) embeds in a rami�ed 
overingXr(p) of Spe
(A). Moreover Xr(p) naturally 
arries the stru
ture of a ve
torspa
e and the 
overing automorphism group is a �nite group of linear transfor-mations.Proof: The proof is based on essentially the same ideas found in the proof oftheorem 3.14, page 58. Again C
oneY (k) indu
es a 
anoni
al multivalued evalua-tion map ev from �W (HR0) into the dual C�Y (k).The 
overing Xu(p) extends to a rami�ed 
overing Xor (p) over the relative in-teriors of the 
odimension one divisors. By a 
omputation of the Wronskian ofEv(k) similar to the one in the proof of theorem 3.13, page 56 one 
an provethat the evaluation map lifts to a single valued immersion evor on Xor (k).Now one pro
eeds by indu
tion on the 
orank of R0 in R. Let x be a point onGS for some S 2 Ro(R0; R) of rank rk(R0)+m for some m > 0. By theorem 4.2x has a neighborhood U whi
h is isomorphi
 to the produ
t�m � (�N(S;R) \ Cone(S;R)):Now by assumption the stabilizer of x inW (R0; R) is a dire
t produ
t ofW (S;R)and the subgroup of W (S) generated by all re
e
tions �xing R0 and x.In parti
ular the fa
tors in this dire
t produ
t ea
h a
t in a seperate fa
tor in theCartesian produ
t for U written above. Hen
e the proje
tion of x on Spe
(A)has a small neighborhood whose interse
tion with the regular part �W (HR0)is also a produ
t U1 � U2. Here U1 is the 
omplement of the dis
riminant ofa �nite re
e
tion group in a neighborhood of 0 and U2 is the regular part ofCone(S;R)=W (S;R) interse
ted with a neighborhood of its origin.By the indu
tion hypothesis and the results of se
tion 3.5 one 
on
ludes thatXor (p) embeds in a rami�ed 
overing X�r (p) of Spe
(A)nfA+g and X�r (p) is asmooth variety. 94



The map evor extends lo
ally biholomorphi
ally over X�r (p) to a map ev�r . Thefa
t that monodromy of ev admits a positive de�nite invariant Hermitian formimplies that this extension is an isomorphism onto C�Y (k)nf0g.Then C�Y (k) is a rami�ed 
overing of Spe
(A) extending Xu(p) and its automor-phism group is just the monodromy group of ev. 2Remark 4.4 The 
ondition that all stabilizers should be dire
t produ
ts is notstri
tly ne
essary. The proof of the main theorem 4.15 in the next se
tion ismore general. The argument given there 
ould be applied here as well. It turnsout however that we do not need the stronger result that would be obtained.Remark 4.5 With the given assumptions theorem 4.7 implies that the homo-geneous degree ��(R0; k) of C
oneY (k) equals z=m for some integer m � 1. Herez is either 1 or 2 depending on whether or not W (R0; R) 
ontains an elementa
ting as �1 on Cone(R0; R).4.4 GIT and root systemsIn this se
tion we generalize the usage of Geometri
 Invariant Theory as in [DM℄to arbitrary root systems. The relation between our de�nitions and SL(2; C )-invariants is explained in theorem 4.8.Denote the polynomial algebra of V by P [V ℄ and letP [V ℄ =Md�0 P d[V ℄be its 
anoni
al grading in homogeneous 
omponents. If V = V1 � V2 for twolinear subspa
es V1, V2 then there is a 
anoni
al isomorphismP d[V ℄ �= Mp+q=dP p[V1℄
 P q[V2℄:We will 
onsider an element of the spa
e P p[V1℄ 
 P q[V2℄ as a P p[V1℄-valuedpolynomial on V2 homogeneous of degree q. In parti
ular for any S 2 Ro(;; R)we have su
h a de
omposition arising from V = VS � V S .De�nition 4.3 Let S0 � S be two elements of Ro(;; R). LetP 2 P a[VS0 ℄
 P b[V S0 ℄;i.e. a P a[VS0 ℄-valued polynomial on V S0 . If P 6= 0 the vanishing multipli
ity ofP along V S is de�ned bymS(P ) := maxfj 2 N j P 2Md�j P a[VS0 ℄
 P d[VS \ V S0 ℄
 P b�d[V S ℄g:95



It is useful to de�ne mS(0) =1 with 1 > m for all integers m. The proje
tionof P in P a+mS(P )[VS ℄
 P b�mS(P )[V S ℄is a P a+mS(P )[VS ℄-valued polynomial on V S and will be denoted by PS.Note that if S0 has 
orank one in S and � 2 VS \ V S0 , � 6= 0 andP 2 P a[VS0 ℄
 P b[V S0 ℄then P is divisible by (��)mS(P ) and no higher power of ��. Here �� denotesthe linear fun
tional (�; �) on V S0 .Lemma 4.13 Let S00 � S0 � S be three elements of Ro(;; R) andP 2 P a[VS00 ℄
 P b[V S00 ℄:Then the following inequality between multipli
ities holds:mS(PS0) � mS(P )�mS0(P )Proof: This follows from the de
ompositionV S00 \ VS = (VS0 \ V S00)� (V S0 \ VS):Indeed if PS0 has a non zero 
omponent inP a[VS00 ℄
 P d1 [VS0 \ V S00 ℄
 P d2 [V S0 \ VS ℄
 P d3 [V S ℄then d1 = mS0(P ) and d1 + d2 � mS(P ). Hen
e d2 � mS(P ) �mS0(P ) whi
himplies the same lower bound for mS(PS0). 2We 
an now introdu
e the key obje
t for the 
onstru
tion, a 
ertain algebra ofpolynomials. It is 
onvenient to de�ne �(;; k) := 1.Let k be a rational multipli
ity parameter su
h that �(R; k) lies in the range(1�m2; 0℄, i.e. is of hyperboli
 or paraboli
 type (m2 denotes the se
ond smallestexponent of R). Let N > 0 be a 
ommon denominator of the k�, i.e. Nk� 2 Zfor all � 2 R. Then for any root subsystem S 2 Ro(;; R) we have N�(S; k) 2 Z.Indeed any �(S; k) is an aÆne fun
tion in k with integer 
oeÆ
ients.De�nition 4.4 We de�ne a ve
tor spa
eAN (R; k) := fP 2 P�N�(R;k)[V ℄ j mS(P ) � �N�(S; k) for all S 2 Ro(;; R)of rank rk(R)� 1gDe�ne a C -algebra AN (R; k) byAN (R; k) :=Xd�0AdN (R; k)If �(R; k) < 0 then this algebra has a natural grading (the sum in its de�nitionis then a dire
t sum). If �(R; k) = 0 then AN (R; k) �= C .96



Before studying the stru
ture of this algebra we �rst show its relation to Geo-metri
 Invariant Theory as en
ountered in 
hapter 2. Take R of type An. Usethe standard realisation of this root system in C n+1 . Let e1; : : : ; en denote the
anoni
al basis of C n+1 and V the n-dimensional subspa
e of all ve
tors forwhi
h the sum of their 
oordinates equals zero. The roots are then given byei � ej for 1 � i; j � n+ 1 and i 6= j.Let k = m=N for positive integers m and N su
h that N < (n + 1)m < 2N .De�ne mn+2 as the remainder 2N � (n + 1)m and take mj := m for j 2f1; : : : ; n + 1g. Let �j denote the 
anoni
al proje
tion of (P1)n+2 onto the jthfa
tor P1 for j = 1; : : : ; n+ 2. De�ne a line bundle L over (P1)n+2 as followsL := n+2Oj=1 ��jOP1(mj):Consider the diagonal SL(2; C )-a
tion on (P1)n+2. Then there is a 
anoni
alSL(2; C )-a
tion on L turning it into a homogeneous line bundle. We 
an identifyglobal se
tions in L
d with polynomials in 2n+ 4 variables (written in matrixform) P � x1;1 : : : x1;n+2x2;1 : : : x2;n+2 �that are homogeneous of degree dmj in the jth 
olumn. An element g 2 SL(2; C )a
ts on su
h a se
tion by (gP )(x) := P (g�1x)for a matrix x and matrix multipli
ation in the right hand side argument.Theorem 4.8 There is an isomorphism of algebrasA(L) :=Md�0 �((P1)n+2;L
d)SL(2;C) �= AN (An; k):Here the left hand side is the graded algebra of invariant se
tions in powers ofL.Proof: De�ne a linear map 
d of �((P1)n+2;L
d)SL(2;C) into P�dN�(An;k)[V ℄by 
d(P )(x1; : : : ; xn+1) := P � x1 : : : xn+1 11 : : : 1 0 �Indeed one 
an 
he
k that 
d(P ) is homogeneous of degree �dN�(An; k) by
onsidering the a
tion of diag(�; ��1) for � 2 C � .The SL(2; C )-orbit O of the setf� x1 : : : xn+1 11 : : : 1 0 � j (x1; : : : ; xn+1) 2 V g97



is just fy 2 Mat(2� (n+ 2); C ) j det(yj yn+2) 6= 0 for all j � n+ 1gwhere yj denotes the jth 
olumn of y. In parti
ular this set is dense and hen
e
d is inje
tive. Remains to 
ompute its image.A paraboli
 irredu
ible root subsystem of An is of type As for some s � n. If Sis su
h a system of rank s < n then there exists a subsetI � f1; : : : ; n+ 1g; #I = s+ 1su
h that V S is just the set of all ve
tors in V whose 
oordinates ej , j 2 I 
oin-
ide. The re
e
tion groupW (An) a
ts transitively on paraboli
 root subsystemhen
e we may assume that I is f1; : : : ; s+ 1g. Let (x; : : : ; x; xs+2; : : : ; xn+1) 2V S and x1; : : : ; xs+1 2 C su
h that Ps+1j=1 xj = 0. If P is an invariant se
tion in�((P1)n+2;L
d) then an elementary 
al
ulation yields for all � 2 C :P � x+ �x1 : : : x+ �xs+1 xs+2 : : : xn+1 11 : : : : : : 1 0 � =��dN�(As;k)P � x1 : : : xs+1 xs+2 � x : : : xn+1 � x 11 : : : 1 � : : : � 0 �This shows that mS(
d(P )) � �dN�(As; k) and in parti
ular 
d(P ) is an ele-ment of AdN (An; k). On the other hand if P 2 AdN (An; k) one 
an de�ne afun
tion eP on the dense orbit O by pres
ribingeP � x1 : : : xn+1 11 : : : 1 0 � := P (x1; : : : ; xn+1)and extending it by SL(2; C )-invarian
e and homogeneity properties. The 
on-ditions on the vanishing multipli
ities of P are easily seen to imply that eP islo
ally bounded near any point in Mat(2�(n+2); C ). Hen
e eP extends to an in-variant se
tion also denoted eP . Clearly 
d( eP ) = P . The sequen
e (1; 
1; 
2; : : :)gives the isomorphism. 2Using theorem 4.6 on page 91 we derive two important fa
ts about the algebraAN (R; k).Theorem 4.9 If P 2 AdN (R; k) and S 2 Ro(;; R) then the following inequalityholds: mS(P ) � �dN�(S; k)Proof: This is true if rk(S) � n�1. Now use downward indu
tion on the rankof S. So suppose the above inequality holds for any rank greater thanm. Let S 298



Ro(;; R) be of rank m. For any S0 2 So(S;R) the spa
e V S0 is of 
odimensionone in V S . PS is a homogeneous polynomial of degree �dN�(R; k)�mS(P ) onV S . Moreover, by our indu
tion hypothesis and lemma 4.13 we have:mS0(PS) � �dN�(S0; k)�mS(P )This leads to the equation:XS02So(S;R)(�dN�(S0; k)�mS(P )) � �dN�(R; k)�mS(P )Now using the equality from theorem 4.6 this is equivalent tomS(P ) � �dN�(S; k):The theorem follows by indu
tion. 2When equality holds, one 
an make a sharper statement.Theorem 4.10 Let S � R be a paraboli
 irredu
ible root subsystem. If P 2AdN (R; k) and mS(P ) = �dN�(S; k) then PS is a pure produ
t:PS = Q
 YS02So(S;R)(��S0)�dN(�(S0;k)��(S;k))Here �S0 2 VS0 \ V S is a non-zero ve
tor and Q is an element of AdN (S; k).Proof: If mS(P ) = �dN�(S; k) then it follows from theorem 4.9 and lemma4.13 that for any S0 2 So(S;R) the following inequality holds:mS0(PS) � �dN(�(S0; k)� �(S; k))Hen
e PS is divisible by (��S0)�dN(�(S0;k)��(S;k)). This implies that PS is divisibleby a produ
t of linear fa
tors of total degree at least �dN(�(R; k) � �(S; k)).But this is exa
tly the homogeneous degree of PS . This shows that it equalsa Q times this produ
t of linear fun
tions for some Q 2 P�dN�(S;k)[VS ℄. Thatthis 
oeÆ
ient Q is in fa
t in AdN (S; k) follows from the de
ompositionV = VS0 � (V S0 \ VS)� V Sfor any S0 2 Ro(;; S). 2Note that the proof of theorem 4.10 even shows that the equality mS(P ) =�dN�(S; k) implies the equality mS0(P ) = �dN�(S0; k) for all S0 2 So(S;R)and hen
e for all S0 2 Ro(S;R).The next lemma shows an interrelation between exponents of irredu
ible para-boli
 root subsystems. 99



Lemma 4.14 Suppose �(R; k) is of hyperboli
 type, i.e. 1�m2 < �(R; k) < 0.Let S 2 Ro(;; R) su
h that �(S; k) is also of hyprboli
 type. Let S0 2 R(S;R).If S0 is irredu
ible then �(S0; k) is of hyperboli
 type. If S0 is redu
ible and S00is an irredu
ible 
omponent of S0 not 
ontaining S then �(S00; k) > 0 i.e. it isof ellipti
 type.Proof: Be
ause both are paraboli
 we may assume that S and S0 are generatedby simple roots of R. Say by simple roots �j for j 2 I or j 2 I 0 respe
tively.Assume that S0 is irredu
ible. Then the hyperboli
 Hermitian form H(k) asde�ned in se
tion 3.2 restri
ts to a hyperboli
 form on the C -span of ej , j 2 I .Hen
e its restri
tion to the bigger C -span of ej , j 2 I 0 must also be hyperboli
.This implies that �(S0; k) is of hyperboli
 type.If S0 is redu
ible and S00 is an irredu
ible 
omponent of S0 di�erent from S thenS00 is generated by simple roots �j , j 2 I 00. Moreover �i ? �j if i 2 I andj 2 I 00. By de�nition of H(k) the spa
e SpanC fei j i 2 Ig is perpendi
ular toSpanC fej j j 2 I 00g with respe
t to H(k). Be
ause H(k) is hyperboli
 on theformer span it must by positive de�nite (ellipti
) on the latter. This impliesthat �(S00; k) > 0. 2Theorem 4.10 allows the following important 
onstru
tion of algebra homomor-phisms from AN (S; k) to AN (S0; k) for S0 � S.De�nition 4.5 Let S0 � S � R be irredu
ible and paraboli
 root subsystemssu
h that �(S0; k) � 0. De�ne a homomorphism �S0;S : AN (S; k) ! AN (S0; k)of graded algebras as follows. Fix a polynomial on V S0 \ VS given by� := YS002So(S0;S)(��S00)�N(�(S00;k)��(S0;k))as in theorem 4.10 for d = 1. If P 2 AdN (S; k) then �S0;S(P ) is de�ned as theproje
tion of P onP�dN�(S0;k)[VS0 ℄
 P�dN(�(S;k)��(S0;k))[V S0 \ VS ℄divided by �d.Call two homomorphisms �1; �2 between graded C -algebras A1; A2 equivalent ifthere exists a non zero 
omplex number t su
h that for any homogeneous z 2 A1�1(z) = tdeg(z)�2(z):Note that the 
onstru
tion of �S0;S is unique upto equivalen
e of homomor-phisms. These homomorphisms relate ni
ely to ea
h other a

ording to thefollowing lemma. 100



Lemma 4.15 For any sequen
e S00 � S0 � S the homomorphisms�S00;S0Æ�S0;S and �S00;Sare equivalent.Proof: Take P 2 AdN (S; k). If mS00(P ) > �dN�(S00; k) then both homo-morphisms are zero at P . So suppose mS00(P ) = �dN�(S00; k) and hen
emS0(P ) = �dN�(S0; k). Using these two equalities and applying theorem 4.10twi
e shows that P has a non zero 
omponentQ
�0 
�00 2 P a[VS00 ℄
 P b[V S00 \ VS0 ℄
 P 
[V S0 ℄a = �dN�(S00; k); b = �dN(�(S0; k)� �(S00; k));
 = �dN(�(S; k)� �(S0; k)):Here �0 and �00 are produ
ts of linear fa
tors and Q 2 AdN (S00; k) divides P .In parti
ular both homomorphisms map P to a non zero s
alar multiple of Q.2Remark 4.6 One 
an even prove that the �S0;S 
an be 
onstru
ted in su
h away that the homomorphisms �S00;S0Æ�S0;S and �S00;S are equivalent by a \twist"of �1.Now we 
onstru
t a variety that is the aÆne 
one of a 
ompletion of the proje
-tive set P(V reg) depending on the multipli
ity parameter k. The variety Qsstappearing in [DM℄ is the SL(2; C )-quotient of (P1)n+2 with respe
t to the linebundle L, i.e. Proj(A(L)). To get a 
ompletion of P(V reg) in general it isreasonable to 
onsider Proj(AN (R; k)):However there remain some problems that 
ompli
ate the study of this spa
e ingreat detail. Here are some important ones.1. For what parameters k is AN (R; k) non-trivial?2. Is AN (R; k) �nitely generated?3. Are the homomorphisms �S0;S as introdu
ed before surje
tive?4. Does P(V reg) embed as an open dense set?Of 
ourse if R is of type An then these questions 
an be answered aÆrmatively.The 
ase of general systems remains un
lear. At the end of this 
hapter Ipresent some partial results on the stated questions. To do so we 
onsider onlya subalgebra of AN (R; k) in that se
tion. Namely the algebra generated byprodu
ts of dual roots. 101



Now instead of studying the algebra AN (R; k) I 
onsider the subalgebra gener-ated by one homogeneous 
omponent AN (R; k). This has the advantage thatthe 
orresponding aÆne variety 
an be 
onstru
ted in a straight forward wayresulting in expli
it formulas and 
omputations.Now �x an irredu
ible root system R of full rank � 3 in E and a rationalmultipli
ity parameter k su
h that �(R; k) is of hyperboli
 type. For any S 2Ro(;; R) we de�neHSo = HSo (R) := V Sn [ fV S0 j S0 2 Ro(S;R) with �(S0; k) � 0gNote that this 
oin
ides with HSo (R) of se
tion 4.3 if �(S; k) � 0 so notationshould not be too 
onfusing.Fix a 
ommon denominator N > 0 of k su
h that N�(S; k) is even for all S 2Ro(;; R) with �(S; k) < 0. The spa
e AN (R; k) is 
learly a �nite dimensionalve
tor spa
e. If A0N (R; k) is its dual we denote the 
anoni
al map of VR intoA0N (R; k) (evaluation) by �R. Then �R is homogeneous of degree �N�(R; k) inparti
ular �R(�v) = �R(v) for all v 2 VR.Like �o in se
tion 4.3, page 87 we de�neIoR := f(v; y) 2 VR � A0N (R; k) j �R(v) = �y for some � 2 C �g:Let IR be the 
losure of IoR and de�ne IR(Y ) for a subset Y � VR byIR(Y ) := fy 2 A0N (R; k) j (v; y) 2 IR for some v 2 Y g:The homogeneous aÆne variety Q(R; k) is by de�nition IR(f0g), i.e. the 
losureof �R(VR).Note that if �(R; k) = 0 then Q(R; k) �= C and �R is a 
onstant non zero map.To relate the varieties Q(R; k) and Cone(R0; R) we need the following theorem.Theorem 4.11 Let S 2 Ro(;; R). De�ne a sequen
e of N(S;R) polynomialson V S as follows: FS0 := YS00 6=S0 ��S00 ; S0 2 So(S;R)The produ
t is taken over every S00 2 So(S;R) and �S00 is a �xed non zero ve
torin VS00 \ V S for all S00 2 So(S;R).If P is a polynomial on V S su
h that:1. P is homogeneous of degree m(N(S;R)� 1) for some m � 1.2. For all S0 2 Ro(S;R) the vanishing multipli
ity of P along V S0 satis�esmS0(P ) � m(N(S; S0)� 1):102



Then there exists a polynomial Q in the indeterminates XS0 , S0 2 So(S;R) su
hthat Q is homogeneous of degree m andP = Q((FS0 )S02So(S;R)):Proof: The proof is given by using a partial fra
tion de
omposition theorem.It will appear in a separate arti
le. 2This theorem has the following important 
onsequen
e.Theorem 4.12 Suppose S 2 Ro(;; R) and �(S; k) < 0. Let 
 (= 
S;R) denotethe map of HSo into Cone(S;R) as in se
tion 4.3. Let for ea
h S0 2 So(S;R)the 
orresponding 
oordinate of 
 be given by 1=��S0 . The map�S : VS � 
(HSo )! Q(R; k)given by�S : (v; y) 7! 0� YS02So(S;R) y�N(�(S0;k)��(S;k))S0 1A � �R(v + 
�1(y))is the restri
tion of a polynomial map on VS � CN(S;R) . In parti
ular it extendsto a morphism �S of VS � Cone(S;R) into Q(R; k). Moreover there exists anon zero 
onstant 
st su
h that �S(v; 0) = 
st�S(v)Æ�S;R for all v 2 VS.Proof: Let P 2 AN (R; k) and let d := �N�(S; k)+m for some m � 0. Denotethe proje
tion of P onto P d[VS ℄
P�N�(R;k)�d[V S ℄ by Pd. Then Pd is divisibleby the produ
t �d := YS02So(S;R)(��S0)�N�(S0;k)�d:Consider the P d[VS ℄-valued polynomial Pd=�d on V S . It is homogeneous ofdegree m(N(S;R) � 1) and satis�es mS0(Pd=�d) � m(N(S; S0) � 1) for anyS0 2 Ro(S;R). Now by putting the de�nitions together one 
he
ks1=�0(
�1(y)) = YS02So(S;R) y�N(�(S0;k)��(S;k))S0 :Using theorem 4.11 we 
on
lude thatYS02So(S;R) y�N(�(S0;k)��(S;k))S0 Pd(u+ 
�1(y))is polynomial in u and y and homogeneous of degree m in y. This shows that�S extends to a morphism on VS�Cone(S;R). For y = 0 we get �S(v; 0)(P ) =103



(P0=�0)(v) and this is exa
tly �S(v)Æ�S;R(P ) for all P upto some s
alar multiple.2If S 2 Ro(;; R) and �(S; k) = 0 then �S has the invarian
e property�S(�u; ��1y) = �S(u; y)for all � 2 C � . Moreover �S(u; y) is a �xed point if either one of u and y vanishes(i.e. it does not depend on the other parameter). Let |S be the 
anoni
al map ofVS�CN(S;R) into VS
CN(S;R) (a Segre embedding from a proje
tive geometri
point of view). Then the map �
S := �SÆ|�1S is a well de�ned morphism of|S(VS �Cone(S;R)) into Q(R; k).At this point we will make some assumptions to assure that the varieties Q(R; k)have some ni
e properties. Partial justi�
ation of these assumptions is given atthe end of this se
tion.We make the following assumptions.1. For all S 2 Ro(;; R) with �(S; k) < 0: The map �S is an immersionof H;o(S) onto an open dense set in Q(S; k). Moreover �S(v1) = �S(v2)for some v1; v2 2 VS if and only if v1 = !v2 for some ! 2 C satisfying!N�(S;k) = 1.2. If S 2 Ro(;; R) with �(S; k) � 0 and S0 2 Ro(S;R) then �S;S0 is surje
-tive.3. For any S 2 Ro(;; R) su
h that �(S; k) < 0: If v 2 H;o(S) then �S islo
ally biholomorpi
 at (v; 0) 2 VS � Cone(S;R), i.e. is the restri
tion ofa lo
ally biholomorphi
 map.4. For any S 2 Ro(;; R) with �(S; k) = 0: The mapC � � |S(VS � Cone(S;R)) 3 (z; t) 7! z�
S(t) 2 Q(R; k)is lo
ally biholomorphi
 at (1; 0).If S � S0 � R are in Ro(;; R) the homomorphism �S;R indu
es an inje
tivelinear map ��S;R of A0N (S; k) into A0N (R; k) and ��S0;RÆ��S;S0 equals ��S;Ruptosome s
alar multiple. There is a ni
e relation between Q(S; k) and Q(R; k)using the map ��S;R.Theorem 4.13 Let S 2 Ro(;; R) su
h that S 6= R and �(S; k) � 0. The map��S;R maps Q(S; k) into IR(HSo ) � Q(R; k).Proof: Let u1 2 VS and u2 2 HSo . Take � 2 C � . Then (�u1+u2;�S(u1; �
(u2))is an element of IR where �S and 
 are as in theorem 4.12. In parti
ular104



(u2;�S(u1; 0)) 2 IR whi
h shows that �S(u1; 0) = 
st��S;RÆ�S(u1) is 
ontainedin IR(fu2g). Be
ause the latter set is 
losed ��S;R maps Q(S; k) into IR(fu2g).2Note that if �(S; k) = 0 then ��S;R maps Q(S; k) onto a line (a one dimensionallinear spa
e). Indeed Q(S; k) �= C in this 
ase. We 
all su
h lines the 
uspidallines on Q(R; k) and any point on su
h a line a 
uspidal point.The following theorem proves that in fa
t IR(HSo ) is exa
tly the ��S;R-image ofQ(S; k).Theorem 4.14 The ��S;R-images of IS(H;o(S)) 
onstitute a strati�
ation ofQ(R; k)nf0g if S ranges over all elements of Ro(;; R) with �(S; k) � 0.Proof: Let � : Y ! VRnf0g be a smooth blow up su
h that:1. The restri
tion of � to ��1(H;o) is an inje
tive immersion.2. For S 2 Ro(;; R) with �(S; k) � 0 the 
losure of the preimage ��1(HSo )in Y is a divisor of 
odimension one.3. These divisors have normal 
rossings.Take n = rk(R). Let x 2 Y be a point and x1; : : : ; xn polydis
 
oordinates ona neighborhood U of x su
h that the ex
eptional divisors on Y passing throughU have lo
al equations xj = 0, j = 1; : : : ; s for some s � n. Let W (Rj) bethe stabilizer of the �-image of the divisor xj = 0 for some root subsystem Rj .De�ne numbers mj as the multipli
ity �N�(Rj ; k) for j � s.Then the map on Unfu 2 U j xj(u) = 0 for some j � sg given byx�m11 � � �x�mss � �RÆ�extends holomorphi
ally over all points u 2 U with xj(u) = 0 for at most onej � s. Indeed by the argument from the proof of the previous theorem it mapsthe set fu 2 U j xj(u) = 0 and xi(u) 6= 0 for all i � s; i 6= jginto ��Rj ;R(Q(Rj ; k)). Now by Hartog's theorem the map extends over all ofU and the divisor xj = 0 ne
essarily gets mapped into ��Rj ;R(Q(Rj ; k)). Thetheorem follows by indu
tion on the rank of R. 2With this strati�
ation of Q(R; k) in mind, assumptions 3 and 4 about thenature of Q(R; k) above give its lo
al stru
ture near non-
uspidal and 
uspidalpoints respe
tively.The re
e
tion group W (R) a
ts naturally on AN (R; k). The map �R is W (R)-equivariant and hen
e IR is invariant under the diagonal W (R)-a
tion. In par-ti
ular the W (R)-a
tion restri
ts to an a
tion on Q(R; k). The map ��S;R is105



W (S)-equivariant if we 
onsider W (S) as a subgroup of W (R) in the naturalway.If S 2 Ro(;; R) has rank rk(R)�1 and �(S; k) < 0 then IR(HSo ) has 
odimensionone in Q(R; k).Lemma 4.16 For S as above the element w 2 W (R) a
ts as an involution onQ(R; k) that �xes IR(HSo ) pointwise if and only if �w is a re
e
tion �xing S.Proof: By invarian
e of IR and theorem 4.13 su
h an element w must a
t asa s
alar ! on VS for some ! satisfying !N�(S;k) = 1. Then w maps S onto Sand so ! = �1. Now w a
ts non trivial on Q(R; k) and hen
e !w has to be are
e
tion of V (S has 
orank one in R). 2Any re
e
tion inW (R) a
ts as a 
ertain involution onQ(R; k) �xing a subvarietyof 
odimension one. On V any subgroupW (S) for S � R a stri
t paraboli
 rootsubsystem has a nonzero simultaneous �xed point. On Q(R; k) the situation isdi�erent.Lemma 4.17 Let S 2 Ro(;; R). The subgroup W (S) of W (R) has a simulta-neous �xed point on �R(H;o) if and only if �(S; k) > 0.Proof: The map �R is W (R)-equivariant and its �bres are C�N�(R;k)-orbits(
y
li
 group of roots of unity a
ting by s
alar multipli
ation). Hen
e �xedpoints of a re
e
tion s� 2 W (S) on �R(H;o) are exa
tly the �R-images of itseigenspa
es in VR (re
all that N�(S; k) was supposed to be even). The inter-se
tion of eigenspa
es of all re
e
tions in W (S) is exa
tly V S . We 
on
lude theproof by the observation that V S interse
ts H;o if and only if �(S; k) > 0. 2Corollary 4.4 Let S be as in the previous lemma and let S0 2 Ro(;; R) su
hthat �(S0; k) < 0. The group W (S) has a simultaneous �xed point on the relativeinterior ��S0;RÆ�S0(H;o(S0))of Q(S0; k) embedded in Q(R; k) if and only if �(S; k) > 0 and S0 is W (S)-stable.Proof: The set ��S0;RÆ�S0(H;o(S0)) interse
ts no IR(HS00o ) for any S00 � S0. ByW (R)-invarian
e of IR it follows that HS0o and hen
e S0 must be W (S)-stable.If S ? S0 then �(S; k) > 0 by lemma 4.14 on page 100 and W (S) even �xesIR(HS0o ) pointwise. If S � S0 we 
an apply the previous lemma on Q(S0; k) byW (S)-equivarian
e of ��S0;R. 2The importan
e of these observations is that if x 2 Q(R; k)nf0g is any non
uspidal point then x 
an beW (S)-stable for some S 2 Ro(;; R) only if �(S; k) >0, i.e. is of ellipti
 type. This plays an important role in proving the maintheorem on dis
reteness of monodromy in this 
ase.106



4.5 Hypergeometri
 fun
tionsAfter studying the varietyQ(R; k) the hypergeometri
 fun
tion returns into play.In this se
tion we �nally want to prove dis
reteness of the monodromy group ofthe system ES(k) under some natural integrality 
onditions on its exponents.The hypergeometri
 system for a root system of type Dn is a
tually the sameas that of type Bn if we de�ne k� = 0 for the 2n \short" roots. Be
ause of thisand the fa
t that Dn plays an ex
eptional role in some sense (see remark 4.2 onpage 86 for example) we do not 
onsider root systems of type Dn in this se
tionaltogether.The map �R is assumed to be an immersion on H;o. In parti
ular it is animmersion on V reg. Consider the hypergeometri
 system Ev(k) of germs at thepoint v 2 V reg . Let y := �R(v) and denote the pushforward of Ev(k) by �R asEQy (k). Naturally any germ in EQy (k) 
an be 
ontinued analyti
ally throughout�R(V reg). The system has the following properties.Lemma 4.18 1. The determination order of EQy (k) is rk(R) and any deter-mination is homogeneous of degree 1=N .2. For any w 2 W (R) there is a 
anoni
al isomorphism of EQy (k) onto EQwy(k)as ve
tor spa
es.3. For any root � 2 R the system EQy (k) has exponents 0 and 1� 2k� along�R(�? \ V reg) with multipli
ities n� 1 and 1 respe
tively.4. Let S 2 Ro(;; R) be of rank rk(R) � 1 su
h that �(S; k) < 0. Then theexponents of EQy (k) along IR(HSo ) are 0 and ��(S; k) with multipli
itiesrk(R)� 1 and 1 respe
tively.Proof: The �bres of �R on V reg are orbits of a 
y
li
 group. Be
ause the systemEv(k) is homogeneous of degree �(R; k) it is invariant under this 
y
li
 group.Hen
e the push forward EQy (k) has the same determination order (rk(R)). Thehomogeneous degree of EQy (k) is the quotient of the homogeneous degrees ofEv(k) and the map �R. This proves 1.Properties 2 and 3 are 
lear. Let S be as in property 4. Re
all that in this
ase IR(HSo ) has 
odimension one in Q(R; k) and is isomorphi
 to Q(S; k). Letu1 2 VS and u2 2 HSo . The 
urve� 7! �S(u1; �
(u2))is a smooth 
urve for � 2 C near 0 and passes through IR(HSo ). By de�nitionof �S it is also given by� 7! 
st�R(�� �(S;k)�(R;k) (�u1 + u2))107



where 
st is some 
onstant. Re
all that the system Ev(k) is homogeneous ofdegree �(R; k) and has lo
al exponents �(S; k) and 0 along V S with multipli
itiesrk(R) � 1 and 1 respe
tively. If � is one of these exponents then the formulaabove shows that � � �(S; k) is a lo
al exponent of EQy (k) along IR(HSo ). 2Let A be the algebra of W (R) invariant elements in the 
oordinate ring ofthe aÆne variety Q(R; k). Take Q(R; k)=W (R) := Spe
(A) and think of thisas a weighted homogeneous aÆne variety. Let A+ be the ideal of A of allelements with zero 
onstant term. We will 
all A+ the origin of the varietyQ(R; k)=W (R). There is a 
anoni
al proje
tion of Q(R; k) onto Q(R; k)=W (R).For U � V denote the quotient IR(U)=W (R) by IWR (U). If S 2 Ro(;; R) and�(S; k) = 0 we 
all IWR (HSo ) also a 
uspidal line.The map �R is not inje
tive on V reg and hen
e W (R) will not even a
t freely on�R(V reg) in general. However we assumed that the rank of R is at least three.A 
onsequen
e of this is that if w 2 W (R) has a �xed point on �R(V reg) thenthe �xed point set of w has 
odimension at least two in �R(V reg) (re
all thatwe ex
luded the 
ase Dn (n odd) whi
h would be a 
ounter example to thisobservation). We denote the maximal subset of �R(V reg) on whi
h W (R) a
tsfreely by Qf (R; k). In parti
ular �R(V reg \ E) � Qf (R; k).Let Y denote the W (R)-orbit of y on Qf (R; k). The system EQy (k) des
endsnaturally to a system EQY (k) on Qf (R; k)=W (R). Denote the dual of EQY (k) as ave
tor spa
e by EQY (k)�. Analyti
 
ontinuation of (
ompound) germs in EQY (k)indu
es a (left) representation�� : �1(Qf (R; k)=W (R); Y )! End(EQY (k)�):Note that �1(Qf (R; k)=W (R); Y ) is isomorphi
 to �1(C nn�; P (v)) and hen
eto B(M). The ��-invariant Hermitian form H� on EQY (k)� is non degenerateand has signature (1; n� 1).There is a natural multivalued evaluation map ev ofQf (R; k)=W (R) into EQY (k)�whose monodromy is given by ��. Re
all that ev maps even into B , the set ofall ve
tors v su
h that H�(v; v) > 0. Let B be the (n� 1)-dimensional 
omplexball. Then C �B is the universal 
overing of B . If eX is the universal 
overing ofQf (R; k)=W (R) then ev indu
es a (single valued) map fEV on eX mapping intoC � B as in se
tion 3.7. Let ~� : Aut( eX j X) ! eG be a homomorphism onto agroup of transformations of C �B su
h thatfEV(gx) = ~�(g)fEV(x)for all x 2 eX and g 2 Aut( eX j X) (
ompare with �gure 3.4, page 72).We 
an now formulate the main theorem of this se
tion. For � 2 R de�nep� := 2=(1�2k�). Let S 2 Ro(;; R) be of rank rk(R)�1 su
h that �(S; k) < 0.De�ne pS as �2=�(S; k) or �1=�(S; k) depending on whether or not W (R)
ontains an element w stabilizing S su
h that w or �w is a re
e
tion of VR.108



Theorem 4.15 Assume that the four 
onditions on page 104 hold. Supposethat for all � 2 R the number p� 2 N�2 and for all S of rank rk(R) � 1 withnegative exponent the number pS 2 N�1 . Let Xu(p) be the universal Galois
overing of Qf (R; k)=W (R) with lo
al degrees p� and pS along IWR (�? \ V reg)and IWR (HSo ) respe
tively. Then fEV indu
es an embedding of Xu(p) into C �B.Moreover C�B is a rami�ed 
overing of Q(R; k)=W (R) minus the origin and all
uspidal lines extending Xu(p) and with automorphism group eG. In parti
ularthe image of �� a
ts dis
retely on B .Proof: A spe
ialization of the argument from se
tion 3.7. Considering the lo
alexponents of the system EQY (k) shows that fEV des
ends to a lo
ally biholomor-phi
 map evu on Xu(p).Now use the lo
al stru
ture of Q(R; k) to extend Xu(p) as follows. Let S 2Ro(;; R) be su
h that �(S; k) < 0. Take x in the relative interior �S(H;o(S))of Q(S; k) embedded in Q(R; k) by ��S;R. By our assumptions on Q(R; k) andthe properties of the morphism �S introdu
ed before x has a neighborhood Uisomorphi
 to �rk(S) � (�N(S;R) \Cone(S;R)):We may assume that U is su
h that for any w 2 W (R) if wU \ U 6= ; then w�xes x. We may also assume that U \Qf (R; k) is the produ
t of its proje
tionson ea
h of the fa
tors of U (in the 
artesian produ
t for U shown above).An enumeration of all possible multipli
ity parameters k under 
onsiderationshows that the pair (S;R) will never be any of those listed in theorem 4.5,page 90. Hen
e theorem 4.7, page 94 will be appli
able to Cone(S;R). Seethe tables in 
hapter 5.Let S0 � S be the set of roots su
h that s�x = x for all � 2 S0. Then S0 is aparaboli
 root system and ea
h irredu
ible 
omponent has a positive exponent,i.e. is ellipti
.Let the subgroup �x of W (R) be the dire
t produ
t of W (S0) and W (S;R).Here W (S;R) is as introdu
ed in se
tion 4.3. It is a normal subgroup of thestabilizer of x in W (R).BothW (S0) andW (S;R) a
t on a separate fa
tor in the 
artesian produ
t of U .Indeed if w 2 W (S;R) su
h that w(v) = �v for all v 2 VS and P 2 AN (R; k)then P (w(vS + vS)) = P (�vS + w(vS)) = P (vS � w(vS))for all vS 2 VS and vS 2 V S . This is the reason for introdu
ing the W (S;R)-a
tion as we did in de�nition 4.2, page 86.Repla
e U by the smaller symmetri
 neighborhoodU := \w2�xwU:109



The spa
e (U \IR(V reg))=�x is also a 
artesian produ
t, namely of the 
omple-ment of a dis
riminant and the regular part of Cone(S;R)=W (S;R) interse
tedwith a neighborhood of its origin. Hen
e the universal Galois 
overing U(p) ofthis quotient spa
e with lo
al degrees p� and pS along 
odimension one divisorson Q(R; k) has �nite degree and embeds in a smooth rami�ed 
overing of U=�xby the results of se
tions 3.5 and 4.3.Repla
e U again by the smaller neighborhoodU := \w2StabW (R)(x)wU:Then the Galois 
overing U(p) is also the universal Galois 
overing with thesame lo
al degrees of (U \ IR(V reg))=StabW (R)(x):Indeed the map of U=�x onto U=StabW (R)(x) is a rami�ed 
overing with lo
aldegrees one along the 
odimension one divisors.Again it 
an be shown (using the fa
t that fEV indu
es a lo
ally biholomorphi
map on the extension of U(p) as in theorem 3.14, page 58 in se
tion 3.5) thatU(p) embeds in Xu(p) and hen
e this 
overing extends to a rami�ed 
overingX�r (p) of Q(R; k)=W (R) minus the 
uspidal lines and the origin. A similarargument as in se
tion 3.7 shows that the map evu extends to a biholomorhi
map of X�r (p) onto C �B.This proves the theorem. 24.6 Some 
omputational resultsLet k be a rational multipli
ity parameter and N > 0 a 
ommon denominator ofk. In this se
tion we study a 
ertain subalgebra of AN (R; k). Let m : R! N besome multipli
ity parameter (not ne
essarily W (R)-invariant). The following\monomial" Y�>0(��)m�is an element of AN (R; k) if and only if it satis�es:1. P�>0m� = �dN�(R; k) for some d 2 N.2. P�2S\R+ m� � �dN�(S; k) for all S 2 Ro(;; R) and d 2 N satisfyingproperty 1.All su
h monomials together generate a graded subalgebraArN (R; k) ofAN (R; k).Theorem 4.16 If R is of type An then ArN (R; k) and AN (R; k) are the same.110



Proof: This is a 
onsequen
e of the main theorem in invariant theory forSL(2; C ): The algebra of invariant se
tions in L is generated by produ
ts ofdeterminants det(yi yj), i 6= j, y2 Mat(2� (n+2); C ). Under the isomorphism(
d) : A(L) ! AN (An;m=N) these determinants 
oin
ide with dual roots ��.2Be
ause ArN (R; k) 
an be identi�ed with the C -algebra generated by a rational
one in NR+ it follows that ArN (R; k) is �nitely generated.Theorem 4.17 The algebra ArN (R; k) is non trivial exa
tly in the following
ases: R �(R; k) 2An [�1; 0)Bn [�2; 0)E6 [�3; 0)E7 [�7=2; 0)E8 [�16=3; 0)F4 [�4; 0)H3 [�3; 0)H4 [�8; 0)Proof: Suppose the monomial with multipli
ity parameterm 6= 0 is an elementof AN (R; k). Summing up all multipli
ity inequalties for paraboli
 irredu
ibleroot subsystems of 
orank one in R yields lower bounds for �(R; k) as reprodu
edin the table. Of 
ourse 0 is an upper bound for �(R; k).Take for example R = H3. There are six root subsystems of type I2(5) andevery root is 
ontained in exa
tly two of those. This gives�2dN�(H3; k) = 2X�>0m� =XS of type I2(5)0� X�2S\H+3 m�1A � �6dN�(I2(5); k) = �3dN(�(H3; k) + 1)and thus a lower bound for �(H3; k) of �3.In every 
ase satisfying the bounds listed above one 
an expli
itly 
onstru
ta non 
onstant monomial in AN (R; k). For example if m is any multiple of�N�(H3; k) then the monomial Y�2H+3 (��)mis an element of ArN (H3; k). This proves the theorem. 2It is easy to 
he
k that the homomorphisms �S;R map ArN (R; k) into ArN (S; k)and hen
e restri
t to homomorphisms �rS;R.111



Theorem 4.18 If R is of type An or Bn and �(R; k) lies in the hyperboli
 rangethen all �rS;R are surje
tive. In any of the 
ases (F4; p; q) with p = 2, q � 12or p = 3 and q 2 f3; 4; 6; 12g or p = 4 and q = 4 the homomorphisms �rS;Rare surje
tive. In the latter 
ases we take the multipli
ity parameter k su
h thatkR = f1=2� 1=p; 1=2� 1=qg.Proof: In fa
t in all these 
ases a monomial in ArN (S; k) has a monomialpreimage in ArN (R; k). It suÆ
es to 
onsider S of 
orank one in R.Suppose R is of type An and S is of type An�1. Let m 6= 0 be a multipli
ityparameter on S su
h that the 
orresponding monomial is an element of AN (R; k)say. If m0 is a multipli
ity parameter on An su
h that its restri
tion to S is mthen it is not hard to 
he
k that the monomial 
orresponding tom0 is an elementof AN (R; k) if and only if for every � 2 AnnSm0� � 0�X�?�m�1A+N�(An�2; k)and of 
ourse P�2Anm� = �N�(An; k). Note that roots perpendi
ular to �form a system of type An�2 
ontained in S. All these inequalities 
an indeedbe ful�lled exa
tly if �1 � �(An; k) < 0.The 
ase R = Bn 
an be treated with a similar argument involving root sub-systems of 
orank one and two.The listed 
ases for F4 were 
he
ked on a 
omputer. This was done by only
onsidering the extremal multipli
ity parameters on 
orank one susbsystems.The 
omputation then amounts to a feasibility test of a set of linear inequalities.2If in any of the 
ases in theorem 4.18 �(R; k) is stri
tly greater than the lowerbounds listed in the table above then there exists a multipli
ity parameter msu
h that all inqualities on m 
orresponding to root subsystems are stri
t in-equalities. This implies in parti
ular that ArN (R; k) has suÆ
iently many ele-ments to ensure that �R is an immersion on V reg with 
y
li
 orbits as �bres.We 
on
lude this 
hapter with a �nal remark.Remark 4.7 Suppose R and k are su
h that �(S; k) > 0 for every paraboli
irredu
ible root subsystem S of 
orank at least two in R. Then instead of 
on-sidering Q(R; k) it suÆ
es for the purpose of proving the main theorem to blowup VR in all one dimensional linear subspa
es with a hyperboli
 stabilizer.In parti
ular this suÆ
es to handle all 
ases where R has rank three. Also(H4; 3) and (F4; p; q) with p = 2 and q = 4; 5 or p = 3 and q = 4 are otherexamples. See the tables in the next 
hapter.It is an interesting question if in general the variety Q(R; k) (or one with similarproperties) 
an be obtained by su

esive blow ups and blow downs of VR.112
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Chapter 5Tables
5.1 The marked Coxeter diagramsThis 
hapter 
ontains the tables of marked Coxeter diagrams of ellipti
, para-boli
 and hyperboli
 type for whi
h the asso
iated 
omplex re
e
tion group isdis
rete in the suitable unitary group. For some hyperboli
 diagrams dis
rete-ness is still 
onje
tural (see the remark in se
tion 5.4). The tables list all 
asesof rank at least two and with a mark that is at least three.In the ellipti
 
ase the asso
iated re
e
tion group is �nite. In the paraboli
 
aseit a
ts 
o
ompa
tly on aÆne spa
e. For hyperboli
 diagrams the asso
iatedre
e
tion group a
ts dis
retely on the 
omplex hyperboli
 ball. In the hyperboli

ase the a
tion is 
o
ompa
t for all diagrams that do not 
ontain paraboli
subdiagrams. In all other 
ases it a
ts with 
o�nite volume.5.2 The ellipti
 diagramse ep qmm 5 6 8 10p 3 2 2 2q 3 3; 4; 5 3 3Type (I2(m); p; q)

e e e ep p p prk 2 3 4p 3; 4; 5 3 3Type (Ark; p)114



e e e ep p p q4rk � 2 2 3p 2 3 3q � 3 3; 4; 5 2Type (Brk; p; q)5.3 The paraboli
 diagramse ep qmm 6 8 12p 2 3 2 2q 6 3 4 3Type (I2(m); p; q)
e e e ep p p prk 2 3 5p 6 4 3Type (Ark; p)e e e ep p p q4rk 2 3 4p 3 4 3 4 3q 6 4 3 2 2Type (Brk; p; q) e e e3 3 3e3Type (D4; 3)

e e e e3 3 2 24Type (F4; 3; 2)5.4 The hyperboli
 diagramsDiagrams that 
ontain a hyperboli
 proper subdiagram are the result of thetheory in 
hapter 4. 115



e ep qm1p + 1q < 1� 2mm � 5 and p = q if m is odd.Type (I2(m); p; q)
e e e ep p p prk 2 3p � 7 5; 6; 7; 8; 9; 10; 12; 18rk 4 5 6 7 8 9p 4; 5; 6; 8 4; 5 3 3 3 3Type (Ark; p)e e e ep p p q4rk 3p 3 4q 4; 5; 6; 7; 8; 9; 10; 12; 15; 18; 24; 42 3; 4; 5; 6; 8; 12; 20p 5 6 7 8q 2; 3; 4; 5; 10; 20 2; 3; 4; 6; 12 2; 3; 42 2; 3; 4; 8; 24p 9 10 12 18q 2; 3; 18 2; 3; 5; 15 2; 3; 4; 6; 12 2; 3; 9rk 4p 3 4 5 6 8q 3; 4; 6; 12 2; 3; 4; 6 2 2; 3; 6 2; 4rk 5 6 7 8p 3 4 3 4 3 3q 2; 3; 4; 6 2; 4 2; 3; 6 2 2; 3 2Type (Brk; p; q)e e e e eep p p p ppp 3; 4Type (E6; p) e e e e e ee3 3 3 3 3 33Type (E7; 3)e e e e e e ee3 3 3 3 3 3 33Type (E8; 3)116



e e e ep p q q4p 2 3 4 6q 4; 5; 6; 8; 12 3; 4; 6; 12 4 6Type (F4; p; q)e e ep p p5p 3; 4; 5; 10Type (H3; p) e e e ep p p p5p 3; 5Type (H4; p)
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Index of notations_, ^, 84(a; b)m, 41Area(
), 18ArN (R; k), 110Aut(X j Y ), 6A(k), 56AN (R; k), AN (R; k), 96Ao(k), 62A`, 65B , 71�S , 87B, 71B(M), 42B(M;p), 44Cx(k), 91Caltx , 92C
oneY (k), 93C
oney (k), 93Cone(R0; R), 87C(M;p), 65�, 5, 42Æ(�; �), 76�1, 72D, 7, 42d(�; �), 28, 59, 63D�, 24(E; (�; �)), 40E , 51ES , 54Ev(k), 53EQY (k), 108

EQy (k), 107ev , 11, 24, 55ej(k), 54ej(k; �), 10ej(z), 16FS , 53F�S , 55Fv, 53�S , 103�
S , 104�S0;S , 100��S0;S , 104'(z1; : : : ; zn), 15FD , 17GS , 88�, �(Y ), 87�o, 87�W (U), 93�S , 88�WS , �W� , 93��, 90
R0;R, 87eG, 72G(M;p), 45HS(R), 85HSo (R), 85, 102H , 45H(�; �), 19H�, 48H�, 63[i j℄, 24118



�R, 102IoR, IR(Y ), 102IWR (U), 108K 0, 44`, 54�, 66L(k), 52(M;p), 43mS(P ), 96M(z), 18r(k), 49�(k), 48, 51�(R; k), 91N(R0; R), 83Pol(�), 18pev, 24�1(X; x), 6�r, 58P [V ℄, 95PS , 96P�(w), 19Q, 23Q(R; k), 102Qf (R; k), 108(R0)??, 84R(R0; R), Ro(R0; R), 83Rev , 57�, 53��, 55~%(k), 49%, 45%�, 48R, 40S(R0; R), So(R0; R), 83Spe
(A), 93, 108S(z; t), 16�D, �, 68

Vol(M(z)), 18V reg, 41VU , V U , 83eX, 57X�r (p), 59Xu(p), 58X , 42
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IndexC � -a
tion, 43area (of loops), 18Bessel fun
tions, 52birational map, 87blow up, 74, 105, 112braid group, 8, 42braid group, trun
ated, 44Brieskorn's theorem, 43Chevalley's theorem, 42
overing automorphism, 6
overing map, 6Coxeter arrangement, 83Coxeter diagram, 41Coxeter diagram, marked, 43Coxeter element, 41, 46Coxeter integers, 41Coxeter matrix, 41Coxeter number, 41Cremona 
one, 82, 87
rystallographi
 group, 66
uspidal line, 105, 108
uspidal point, 105degree (of 
overing), 6degree (of theta fun
tion), 68dis
riminant, 7domain, 4Dunkl 
onne
tion, 49Euler ve
tor �eld, 51evaluation map, 11, 24, 55, 94, 108evaluation map, restri
ted, 57exponent (of diagram), 48

exponent (of di�erential equations),53exponent (of root system with mul-tipli
ity parameter), 91exponents (of fun
tion), 26fa
et, 43
at se
tion, 50fundamental group, 6geometri
 quotient, 14, 23geometri
 realisation, 45GIT, 23, 82, 95Hartog's theorem, 5, 29, 59Hermitian form, 59, 71Hermitian stru
ture, 19hyperboli
 diagram, 70hyperboli
 form, 19, 24, 47, 48hypergeometri
 fun
tion, 14, 107invariant fa
tors, 67isomorphism theorem, 5Lapla
e operator, 52lo
al degree (of 
overing), 6maximum prin
iple, 4, 80monodromy representation, 10, 24,52, 93, 108monomial, 110Nilsson 
lass, 9, 23, 91open mapping theorem, 4paraboli
 diagram, 61120



paraboli
 form, 47, 63Poin
ar�e-Bergman metri
, 28, 76point group, 65presentation, 61, 64, 77re
e
tion representation, 44re
e
tion representation, logarithmi
,48regular part, 89Riemann extension theorem, 5root system, 40root system, paraboli
, 83S
hwarz-Christo�el map, 16spe
ial eigenvalue, 45subregular, 8, 43symmetri
 group, 7symmetri
 polynomials, 7theta fun
tion, 65, 67translation, 65unit ball, 71vanishing multipli
ity, 95Wronskian, 11, 25, 55
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Complexe spiegelingsgroepen enhypergeometris
he funktiesIn de theorie van eindige re�ele spiegelingsgroepen zijn de resultaten betre�endepresentaties en invariantentheorie van dergelijke groepen nadrukkelijk aanwezig.Voor eindige (eventueel 
omplexe) spiegelingsgroepen in het algemeen is de in-variantentheorie evenzeer goed begrepen (in deze theorie is het niet van belangom de ordes van de voortbrengende spiegelingen te kennen). Op het gebied vanpresentaties van deze algemenere groepen ligt dat anders. Hier zijn presentatiesbes
hreven door deze met een 
omputer geval voor geval te testen, hetgeen inessentie mogelijk is daar de betrokken groepen eindig zijn.In dit proefs
hrift wordt van een zekere klasse van 
omplexe spiegelingsgroepen(waaronder zowel eindige (Shephard-groepen) als niet-eindige groepen vallen)op een intrinsieke manier resultaten bewezen betre�ende presentaties en invari-anten.Belangrijkste hulpmiddel bij het opzetten van deze theorie zijn de hyperge-ometris
he funkties geasso
ieerd met wortelsystemen. In het bijzonder de al-gebra��s
he en meetkundige kant van het analytis
h voortzettingsgedrag wordtuitgebreid bestudeerd.Hoofdstuk 1 s
hetst de gevolgde methoden aan de hand van de symmetris
hegroep. Hoofdstuk 2 tra
ht reeds bekend werk van Deligne en Mostow in meerelementaire termen uiteen te zetten. Hoofdstuk 3 vormt in wezen de kern vandit proefs
hrift en behandelt willekeurige eindige wortelsystemen met daaraangerelateerde 
omplexe spiegelingsgroepen. Hoofdstuk 4 tenslotte is een aanzetom resultaten van hoofdstuk 3 in een algemenere vorm te kunnen begrijpen enbewijzen. Dit laatste hoofdstuk is voornamelijk meetkundig van aard.
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