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Chapter 1

Introduction

1.1 Function theory

In this section I recollect some theorems from multi-variable function theory
that are used in this paper. They are all quite elementary and omitted proofs
can be found in [G].

Definition 1.1 A subset U C C" is called a domain if it is open and connected.

Theorem 1.1 (Open mapping theorem) Let U C C* be a domain and
F:U—-C

a non-constant holomorphic function, then F' is an open mapping.

Theorem 1.2 (Maximum principle) Let (-,-) denote the standard hermi-
tian form on C™, and let U C C" be a domain. If a holomorphic mapping

F:U—-C"
is such that the (real valued) function
z = (F(2), F(2))

attains a mazximum on U, then F is a constant mapping.

Proof: Suppose that (F(z,), F(z,)) = M is maximal for some z, € U. Define
a holomorphic function ¢ on U by:



Then the Schwarz inequality yields
p(2)* < (F(2), F(2)) - M < M?

Now because ¢(z,) = M, the open mapping theorem implies that ¢ is constant
on U. Again by Schwarz, we conclude that F' maps into the circle T'y - F'(z,),
where T’y is the unit circle in C. By the open mapping theorem it follows that
F' has to be a constant.O

Definition 1.2 Define
A={zeC|z] <1}
A* = A\{0)
and for k < m:
A™F = L(z1,... 2m) € A™ | 2; £ 0 for some j < k}
Theorem 1.3 (Hartog’s theorem) Let m,k be two integers, m > k > 2, and
F:A™F 5 C

a holomorphic function. Then F extends to a holomorphic function on A™.

Theorem 1.4 (Riemann extension theorem) Let m > 1 be an integer and
F:A™' 5 C

a holomorphic function such that for any w € A™1 the function
z = F(z,w)

extends holomorphically to A. Then F extends holomorphically to A™.

Theorem 1.5 (Isomorphism theorem) Let m,k be two integers, m > k >
2. If a holomorphic mapping

F:A™F 5 Cm
1s locally biholomorphic, then F extends to a locally biholomorphic mapping on

A™,

Proof: By Hartog’s theorem, F' extends holomorphically to A™. The function

OF;
C— det i
7o (62«_7)
is holomorphic on A™ and non-vanishing on A™*. Hence 1/; is holomorphic

on A™. In particular, j is non-vanishing throughout A™. This implies that F'
is locally biholomorphic. O




Definition 1.3 If X is a topological space and x € X we denote its fundamental
group with base point x by m (X, x). If g1 and go are the homotopy classes of
loops v1 and 2 respectively then g1 go is the homotopy class of the concatenation
Y1 * Y2 obtained by passing along v1 and o in this order.

Definition 1.4 Let X and Y be connected complex manifolds. A surjective
holomorphic map m: X — Y is called a covering map if every point y € Y has
a neighborhood U such that the restriction of w to any connected component of
7~ Y(U) is a biholomorphic map onto U.

Let m : X = Y be a covering map. The set of all biholomorphic mappings g
of X onto itself satisfying mog = g equiped with the product (g1,g2) — g10g2 s
called the automorphism group of the covering and is denoted by Aut(X |Y).

The cardinality of any fibre of w is called the degree of the covering (this does
not depend on the chosen fibre).

A covering is called Galois if its automorphism group acts transitively on each

fibre.

If X is simply connected then it is called a universal covering of Y.

Theorem 1.6 Suppose 7 : X — Y is a universal covering map and y € Y.
The groups m (Y,y) and Aut(X |Y) are canonically isomorphic.

If 7 : X = Y is a universal covering and g € n(Y,y) we write z — gz for the
corresponding covering automorphism.

Definition 1.5 Let Y be an analytic variety (see [G]) and D C'Y be a subva-
riety such that Y\D is a complex manifold (i.e. is smooth). Let m : X — Y\D
be a Galois covering and take y € Y. IfU is a connected neighborhood of y such
that U\D is connected then let d(m,U) be the degree of the restriction of m to
any connected component of 71 (U). The local degree of © at y is the minimum
of d(w,U) taken over all neighborhoods U as before.

Definition 1.6 Let X and Y be connected analytic manifolds. A surjective
holomorphic map 7 : X — Y is called a ramified covering if it satisfies the
following two conditions.

1. Every y € Y has a neighborhood U such that the restriction of m to any
connected component of 7 1(U) is a finite branched covering of U in the

sense of [G].

2. If z1 and xo are elements in X such that w(x1) = w(x2) then there is a
biholomorphic mapping g of X onto X such that mog = w and g(x1) = x2.



The group of all biholomorphic mappings g of X onto X such that mog = 7 is
called the automorphism group of the covering and is denoted as Aut(X |Y).

Let m : X = Y be a ramified covering. The mazimal cardinality of a fibre of
is called the degree of the covering. If y € Y and U is a neighborhood of y then
let d(m,U) be the degree of w restricted to any connected component of 7~ 1(U).
The local degree of m at y is the minimum of all degrees d(mw,U) taken over all
neighborhood s U of y.

1.2 The symmetric group

Some notions and techniques used in this thesis will be introduced for the exam-
ple of the root system of type A,. This has the advantage that the associated
reflection group is the symmetric group S,4+1. The structure of this group and
its polynomial invariants will be familiar to the reader. Nevertheless, even for
this case one can prove non-trivial results. Studying the symmetric group leads
to an intrinsic proof of a theorem by Orlik and Solomon [OS] on the invariants of
Shephard groups related to S, +1 and a result of Coxeter [C] on presentations of
such groups. The proofs in [OS] and [C] are based on a case by case verification
using a computer.

Consider the symmetric group S,41 for some n > 1. It has a natural represen-
tation p on C"*!. If ey,...,en41 is the canonical basis of C"*!' and o € S, 41
then p(o)e; = e, (-

Let z1,..., 2,41 denote the canonical linear coordinates on C**t!. Tt is well
known that the algebra P[C"*1]%7+1 of symmetric polynomials on C"*! is gen-
erated by the elementary symmetric polynomials s, ..., S,4+1. These are defined
by

n+1

JIX —z) = X" — i X"+ 4+ (=1)" s

=1

in particular s; = z; + ... 4+ zp41 and s; is homogeneous of degree j. The
restriction of p to the n-dimensional subspace V' given by s; = 0 is irreducible. In
the rest of this introduction we use this restriction. The square of the polynomial

6 on V given by
(5 = H (21 - Zj)

1<i<j<n+1
is clearly symmetric. Hence 62 = D(s,...,5,11) for some polynomial D €
Clz1,...,z,] in the indeterminates 1, ..., z,. This D is called the discriminant

of Sp41. Note that § vanishes at z € V if and only if z; = z; at z for some ¢ # j,
i.e. if and only if z is fixed by p(i j). The complement of the vanishing locus of ¢
is called V7?9, a point in this complement is called regular. Note that a point is



regular precisely if its S,,11-orbit contains (n 4+ 1)! points. The vanishing locus
of D on C" is denoted by A or A”~! to indicate the dimension.

The set A has a natural stratification as follows. Let (aq,...,am,) be a non-
decreasing sequence of integers such that a; > 1 and |a| := a1 +.. .+ am,m < n+1.
Let Aq,,....a,,) denote the stratum of all points (x1,...,7,) € A such that the
polynomial

X X — o (=) g,

has exactly m multiple zeroes with multiplicities aq, ..., a.,, respectively. For
example A(,, ;1) = {0} and A(y) is the “subregular” stratum of dimension n —1.
If z € Ag,,...a,,) then there exists a coordinate neighborhood of z that is
isomorphic to a Cartesian product of m + 1 factors of the following kind: An
(n + m — |a|)-dimensional polydisc and for each 1 < j < m the complement
of A%~%in an (a; — 1)-dimensional polydisc. We will make use of this local

structure later on in an inductive argument on the dimension 7.

Using the elementary symmetric polynomials as coordinates we get a map

S:V-oC, S:z-(s2(2)y...,8n41(2)).

To study the complement C*\A fix a base point u = (uy,...,un+1) € V such
that u; € R for all j and u; <us < ... < upyi. For j =1,...,n define a path
~; connecting u with p(j j+1)u as follows
1— eﬂ'it
v;(t) = u+ T(p(j j+u —u), t €0,1].
Theorem 1.7 The fundamental group G := m (C"\A,u) is generated by the
homotopy classes g; of the loops Sovy;. Moreover it has the following presenta-
tion
(91,-- 90 | 9i9j = 9i9i, if 1<, <nandl|i—j|>1
9i9j+195 = gj+19i95+1, all 1 < j <m)

Proof: See [FN]. O

The group G is isomorphic to the braid group of n + 1 strings as introduced by
Artin [A1,A2]. For any integer p > 2 we denote the smallest normal subgroup of
G containing all elements g¥ by I'(p). The quotient G//T (p) is called a truncated
braid group. We can now prove an important geometric property of the map S.

Theorem 1.8 The map S is a branched covering map with branch locus A.
The restriction of S to V' is a Galois covering of C*\A of local degree two
along A(ay. Moreover it is universal with respect to this property.

Proof: That S is a covering map with branch locus A follows from the fact that
we can recover z from (s2(z), ..., sp+1(2)) upto the S, 1-action. Moreover Sp41



acts transitively on the fibres. This also shows that the local degree along A y)
is two. The universal covering of C*\ A has an automorphism group isomorphic
to G. Now it is well known that S,,11 = G/T'(2). This shows that the covering
S is universal. O

This nice theorem gives rise to the following question. For which p > 3 is the
universal Galois covering of C"\A of local degree p along Ay a finite covering
and what is the structure of such a covering?

In this introduction we will sketch a proof of the following result.

Theorem 1.9 Suppose p > 3 is such that 1 — (n +1)(1/2 — 1/p) > 0. Then
the truncated braid group G/T(p) has a faithful representation p, on an n-
dimensional complex vector space E such that the image G(p) < End(E) is finite
and generated by complex reflections py(g;) of order p. Moreover there are homo-
geneous hi, ..., h, € P[E] generating P[E|®") such that (hy,... h,): E — C*

is a ramified covering with branch locus A and of local degree p. All possibilities
are listed in the following table:

nl[1 ]2 374
pll>3[3,45]|3]3

Proof: The proof is a combination of linear algebra and complex analysis. The
idea is to construct a function of Nilsson class [D] of determination order n on
V"¢ with some S, 41-invariance and homogeneity properties. This induces a
multivalued map ev : C*\A — E for some complex vector space F and the
representation p, by analytic continuation. Then it is proved that ev has a
single valued inverse h on E which is polynomial and p,-invariant, proving the
theorem.

The case n = 1 is trivial. Ramified coverings of any positive local degree at
0 € C are given by the maps = +— zP. Therefore we assume that n is at least 2.

Let U C V" be a simply connected neighborhood of u that does not intersect
any other of its S,1-conjugates. Take k € [0,1/2) and z = (21,...,2p41) € U
with real coordinates. Define a holomorphic differential form ¢(k;z) on the
extended upper half plane

Heo={s€C|Im(s) >0, s #2, j=1,...,n+1}

by
n+1
o(k; 2) = H(ZJ —s) *ds
j=1
where we take a’ := exp(b-loga) for a > 0. For each j = 1,...,n define a

function f;(k;-) on U by

z > fi(k; 2) ::/ o o(k; z).

i



Note that in case kK = 0 these are just n independent linear functions on V.
Lemma 1.1 The following properties for the f;(k;-) hold:

1. Any f;(k;-) extends to a multivalued holomorphic function on V9.
2. The functions fi(k;-),..., fo(k;+) on U are linearly independent over C.

3. The C-vector space F(k) spanned by the f;(k;-) is invariant under analytic
continuation.

4. Each f;(k;-) is homogeneous of degree 1 — (n + 1)k.
5. If o € S,41 and f[y] is the analytic continuation of f € F(k) to p(o)U

along a path 7 connecting u and p(o)u then z — f[y](p(0)z) is again an
element of F (k).

Proof: All statements except 2 can be easily verified using the definition of the
fi(k;-). A proof of 2 is given in the next chapter. O

From these properties we conclude that the map S induces an n-dimensional
vector space Fg(k) of functions on S(U), spanned by the functions

ej(k; ) = e f(ks)o(Sly) ™"

This space is invariant under analytic continuation along loops in C*\A. The
resulting right representation

is called the monodromy representation.

Define ¢ as exp(—2wik) and ¢'/? = exp(—mik). We omit the proofs of the
following two theorems.

Theorem 1.10 For 1 <i,j <mn, i # j we have:
1. My(g;j)e;j (k) = —qe;(k; ).
2. My(gj)ei(k;-) = ei(ks;-) if |i —j| > 1.

3. My(gj)ei(k;-) = e;(k;-) + q'e;(k;-) if i — j| = 1.

In particular My(g;) is a complex reflection on Fs(k).

10



Theorem 1.11 With respect to the basis e;(k;-), j = 1,...,n, the following
n X n matriz defines an My-invariant Hermitian structure on Fs(k).

2 cos(mk) -1 0
-1 2cos(mk) -1
Hk = . T
-1 2cos(7k) -1
0 -1 2 cos(mk)

The Hermitian form Hy is positive definite iff 1 — (n + 1)k > 0.

Note that My(g;) and Hj can be interpreted as a deformation in k of the
generating reflections of p and the Hermitian form on V.

Denote the dual of Fs(k) by Ej. There is a canonical map
ev:S(U) = Ej, z+— evaluation at x

called the evaluation map. It can be continued analytically along any path in
C"\A so we will think of it as a multivalued function on this space. This map
is weighted homogeneous on C*\A, i.e.

ev(\my, N2y, ... N"Th,) = /\]*(”“)kev(m yeeesTy)
for any A € C*. Its local properties are as follows.

Theorem 1.12 The evaluation map is everywhere locally biholomorphic. For
any continuation of ev near a point p € Ay there are local coordinates y1, ..., yn
near p and linear coordinates on Ej such that A has local equation y; = 0 and
the evaluation map is given by

1/2—k
T'_)(yl/ :l/2:---:yn)

for x near p.

Proof: An argument involving the explicit integral formulas for e;(k;-) and the
so called Wronskian of the function space Fs(k). Details can be found in the
next two chapters. O

Let M} denote the transpose of My on Ey, i.e.

(Mg (9)N)(f) = MM (9)f)
for all A € Ey and f € Fg(k). Then M is a left representation.

fr:X o> Cn \A is the universal covering then ev extends to a single valued
holomorphic map ev on X and satisfies

&g - ) = M; (9)ev ()

11



for all covering automorphisms g € G. We denote the image of G under M} by
Gy.

Let p>3and k =1/2—1/pbe such that Hy > 0,i.e. 1—(n+1)k > 0. Then ev
is I'(p) invariant and descends to a single valued function ev,, on the universal
Galois covering

Ty * Xu(p) = F(p)\)’z - (Cn\A

of local degree p along A ;). In particular I'(p) is contained in the kernel of M.

Considering the local structure of C*\A near some point # 0 in A one can
prove by induction on the rank n that X, (p) embeds in a ramified covering
@ X, (p) = C*\{0} with branch locus A\{0}. This means that X,(p) =
7, ' (C"\A) and 7, = m,|x, (). Moreover ev, extends to a locally biholomorphic
map ev, on X,(p).

The Hermitian form Hj on Fs(k) induces an M -invariant metric on Ej;. By
an elementary topological argument and homogeneity of ev, one deduces the
following. There exists a positive number € > 0 such that any local inverse of
ev, near a point y € E} extends to a ball centered at y with radius e times the
distance of y to 0. Hence any local inverse extends to Fr\{0} because this is a
simply connected set if n > 2. This shows that ev, is an isomorphism between

(Xr(p)7 G/F(p)) and (Ek\{0}7 Gk)

Now the map h on F;\{0} — C*\{0} given by h := m.0ev, ' is a map having
holomorphic functions on E\{0} as coordinates. Because 0 is of co-dimension
at least two in Ej, Hartog’s theorem implies that h extends holomorphically to
Ej. and clearly h(0) = 0. In particular b : Ey — C" is a ramified covering of
finite degree and its automorphism group G, is finite.

Note that for any j the ji* coordinate h; of h is homogeneous of degree

_J*t
1—-(n+1)k

which must therefore be an integer. This implies that 1 — (n + 1)k itself equals
1/m for some integer m > 2 and each h; is a polynomial. Moreover each h; is
G invariant and in fact they generate the algebra of Gg-invariant polynomials
on Ek.

Taking p, := M}, E := Ej, and G(p) := G}, the theorem is proved. O

The isomorphism G(p) = G/T'(p) gives a presentation of G(p) consisting of the
braid relations for G and a relation for each generator to make its order p.
The existence of generators hy, ..., h, for P[E]S®) such that h is a branched
covering with branch locus A is a special case of a result in [OS] on discriminants
of Shephard groups.

12
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Chapter 2

Lauricella’s F'p

2.1 Abstract

In this chapter we study the moduli space of (multivalued) differential forms on
P! with n + 3 singular points with fixed exponents, for some n > 1. Integration
of such a form gives rise to a period or evaluation mapping closely related to
the hypergeometric function Fp of Lauricella in n variables. If one imposes
some conditions on the exponents at the singularities of the form this evalua-
tion mapping establishes an isomorphism between a certain geometric quotient
(P")"+3 /PGL(2,C) and a quotient B/T of a complex hyperbolic ball where T
is induced by monodromy of the evaluation mapping.

2.2 Introduction

The classical hypergeometric function was already studied by Euler in the 18"
century. More famous are the impressive results Gauss obtained concerning
this function, which is also referred to as Gauss’ hypergeometric function. The
subject of this chapter was initiated in the 19*" century by Riemann [R] and
Schwarz [S]. Riemann found a particularly nice way to study properties like
monodromy and transformation formulae for the Gauss function. Schwarz then
found all parameters for which the Gauss function has a finite monodromy
group, i.e. for which it is algebraic. His methods were geometric of nature and
later Klein generalized his work to obtain discrete monodromy groups (related
to the so-called Klein triangle groups).

After this, generalizations have been carried out in two directions. In 1989 (!)
Beukers and Heckman [BH] found the parameters for which the higher hyper-
geometric function ,F,,_; has finite monodromy. In this direction, the question

14



remains when this higher hypergeometric function has discrete monodromy. A
question which is, as far as I know, not yet answered. The second direction of
generalizations of the classical work was in several variables. Hypergeometric
functions of two variables were introduced by Appell [A,AK]. Picard then used
Appell’s function F; (Appell introduced F; up to Fy) to study the same ques-
tions about finiteness and discreteness of its monodromy. Though he couldn’t
settle these questions in detail (in fact some of his arguments were wrong) he
did some important work on this function [P1..3].

Little after Appell, Lauricella [L] gave a generalization of the functions Fy...Fy
in arbitrarily many variables called Fpp, F)u, Fg, Fo respectively. In the 1970's
Terada [T] used the Lauricella Fip to continue Picard’s work. But he also did not
have the complete proofs, though he did get the right answers. Then some ten
years later the famous paper by Deligne and Mostow was published [DM]. They
investigated the same questions as Terada and have given a rigorous treatment of
the subject. Recently a very nice paper by Thurston [Th] was published in which
he studies a related moduli problem but now using combinatorial techniques and
theory of conic manifolds. The word hypergeometric function does not appear
in his paper.

The intention of this chapter is to combine some ideas found in [DM] and [Th]
to get a fairly elementary treatment of the subject. I would like to thank
G. Heckman, for many fruitful discussions, E. Looijenga for introducing me to
the subject of Geometric Invariant Theory and H. de Vries for careful reading
of the manuscript.

2.3 The hypergeometric function Fp

Let n € N be at least 1. In this section we fix parameters ug, .. ., int2 € (0,1)
such that )" p; = 2. Take real numbers 2{,...,22 such that 0 < 20 < ... <

rTn
22 < 1 and let z° be the point (2?,...,22) on (P')" where we think of P! as
C U {oco}. This point will serve later on as a base point for some fundamental
group etc. Now take z = (z1,...,2,) € C" and assume for the moment that
also 0 < 23 < ... < z, < 1. We sometimes denote 0,1,00 as zg, Zp+1, Zn+2

respectively. Subscripts should be taken mod n + 3 hence uny3 = o etc.

Define on the union of the upper half plane H with the intervals (z;, zj41)
j=0,...,n+ 2 the holomorphic function

(21,0 y2n) 18> (21, ..., 205 8) = H(z]’—s)f"j

such that ¢(z;s) > 0if s < 0. The exponent of the differential ¢(z;s)ds at
infinity equals —uy,4o. Integrating this form along curves in H yields the so

15



called Schwarz-Christoffel mapping on H:

S(z;t) = /Ot p(z; 8)ds

Here we integrate along any path through # connecting 0 and ¢. This mapping
can be described geometrically in a very nice way. It maps A biholomorphically
onto the interior of a polygon P(z) with vertices (in counter clockwise order)
vj = S(z;2;). At vertex v; the interior angle equals (1 — u;)m, so by our choice
of the parameters u;, the polygon P(z) will be convez.

%]

(%
3 U1

o vg =0

(en]
2
&
—
8

For j € {0,...,n+ 2} let e¢;(2) = vj11 — v; be the j-th directed edge of P(z),
or: i
ej(z) = / w(z; s)ds
zj
This integral formula shows that edges are analytic functions of their argument
2z near the basepoint z° and can be continued analytically throughout X C (P*)”
given by:

X = {(ur,...,un) € (P | #{0,u1,...,u,,1,00} =n+ 3}

Clearly the sum of all n + 3 edges equals zero, but there is even a stronger
dependence.

Lemma 2.1 As analytic functions of the parameter z, any set of (n + 2) edges
is linearly dependent (over C).

Proof: Let E be a set of (n + 2) edges and let e; be the edge that is not
contained in E. Take z near z° and real valued. Reflect P(z) in the edge
connecting v; and vj;1 and glue the image to P(z). The directed edges of this
bigger polygon are exactly e, and cpey for k # j and some n + 2 constants (i.e.
not depending on z) on the unit circle, hence

Z(l +cr)er(z) =0

k#j

is a non trivial linear relation on which holds independently of z. O

16



Not all (n 4+ 1)-tuples of edges need to be linearly independent. However, we
will show that an independent set of (n + 1) edges always exists.

Theorem 2.1 Let J ={0,...,n+ 2}\{ki,k2} be a set of n+ 1 elements. The
edges ej, j € J are linearly dependent iff both edges e, and ey, are “parallel”,
i.e. iff

Phi41 + fieg2 + oo 4 iy, = 1
(This means that if z is chosen real valued then the edges ey, ,(z) of P(z) are
really parallel.)

Proof: The “if” part follows from the proof of the previous lemma (if remain-
ing edges are parallel, some ¢ will equal —1). Now suppose that the remaining
edges are not parallel. Then one checks that any small variation of the lengths
of the edges of P(z°) with indices in .J still realizes a convex polygon P’ (with-
out changing the interior angles). Of course the lengths of the remaining two
edges are then completely determined. Because any polygonal domain is the
biholomorphic image of H under a Schwarz-Christoffel mapping, it follows that
there are numbers 0 < w; < ... < w, < 1 such that the mapping S(w;t)
maps H onto the interior of a convex polygon which is affinely isomorphic to
P'. These n + 1 degrees of freedom show that the edge functions with index in
J are linearly independent. O

The edge e,+1(z) (upto a scalar) is known as the Lauricella hypergeometric
function Fp. Tt is a generalization of the Gauss function in several variables.
Taylor expansion at 0 using Euler’s B function yields:

o
e’”“"“enH (z) = et / p(z;8)ds =
1

— F(l B //'n+2)r(1 B ,un+1) Z (1 - ,un+2)\m\(u)m M
(

Dlpo + -+ pn) =2, (o + o+ ) !

Here multi index notation is used and moreover:

(Wm = (1) my (H2)ms ==+ () m
m! = mqi!ms!---m,!

The above sum is absolutely convergent if |z;| < 1 for all j and is denoted by

FD(l_,un+27,u17"'7:un7:u0+"'+:u‘n;zl7---7zn)

Note that if n = 1, we have:

FD(Q7B77;21) :F(a7677;21)
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Remark 2.1 Deﬁne n+1 d7ﬂ€1"€’nf7(ll Op(i‘T’{ltO?"S as fOllOU)S.'
i = Z5 s =1,...,n, ©:= +...+0,
J J 6 j‘ J 3 s Iy 1

Let Fp := Fp(a,B1,.-.,Bn,7;21,---,2n). Then one deduces from its power
Series expansion

[(©@+y—1)8; —2;(©+ ) +8;)] Fp =0

for all j = 1,...,n. The local solution space of these n equations at any non
singular point is (n+ 1)-dimensional and spanned by the edges e;(z) for suitable
parameters . A solution f mear z is completely determined by prescribing the
values of f and all its (first order) partial derivatives at z.

For any z € X let M(z) denote the punctured Riemann sphere, M(z) =
P'\{0,1,21,...,2n,00}. On M (2) the volume form Q(z) = (i/2)|¢(z; s)|?ds Ads
is well defined (because all p1; are real). This form can be considered as the pull
back of the euclidean volume on C by a “Schwarz-Christoffel” mapping (which

is clear if z is real valued). The volume
Vol(M (z)) :/ Q(z)
M(z)

is positive and finite. It can be expressed in a nice way using the vertices v;(z).
To do so, we introduce and study the notion of Area of loops in C.

Definition 2.1 Let v :[0,1] = C be a piecewise smooth loop (so v(0) = v(1)).
We define the Area of this loop by:

Area(y) = % /Edz
Iy

The area of a loop is just the euclidean area of the region in C that is enclosed in
this loop. (Every point is counted as many times as the loop winds around it in
counter clockwise direction). The area of a loop gives rise to a hermitean form on
a certain (n + 1)-dimensional space. Define 3; = exp(miy;) and w; = fo--- B;
for j € {0,...,n +2}. Then |w;| = 1 and wyyo = 1. If wp,...,wnto are

the canonical linear coordinates on C"*3 let Pol(u) C C**3 be the (n + 1)-
dimensional C-linear subspace defined by the linearly independent equations

n+2 n+2

E wiw; = E wjw; =0
=0 j=0

18



The R-linear subspace
Polg (1) := Pol(u) N R™ 3

is a real form of Pol(u). To a vector w € Pol(u) we associate two piecewise
linear loops P4 (w) and P_(w) which pass through the points

(07 WoWp, WoWqg + WiW1i, ..., wowp + ...+ wn+1wn+1)

and
(O,E(ng,wo'LUO + wwy, ..., Wowo + ...+ wn+] 'LUn+])

respectively in the given order. Note that if w € Polg(u) then P_(w) is the
complex conjugate of Py (w) and vice versa. We can now define an hermitian
structure H on Pol(u) by

H(w,w) = Area(Py(w)) — Area(P_(w))

for all w € Pol(p). In particular, if w € Polg(u) then H (w, w) = 2Area(Py (w)).
If v and w are both in Pol(u) then by triangulating these polygons one can
compute explicitly (coordinates of w and v indexed from 0 to n + 2):

1
H(U7 ’LU) = —7 Z (wkwl - wkwl)(vkm + ’l)lmk)
0<k<I<n+41

Note that H restricted to Polg(u)? is real valued. We will exploit this fact in
the proof of the following theorem.

Theorem 2.2 Let n be at least 2. Then the hermitean form H on Pol(u) is
hyperbolic, i.e. has signature (1,n).

Proof: By the remark above, it suffices to show that the restriction of H on
Polg(p)? is hyperbolic. We will diagonalize this restriction step by step. Take
w € Pol(p) N RZE?. Because n > 2 there is a number j € {0,...,n + 2} such
that p; + pjp1 < 1. This implies that there are positive real numbers z,y such
that w; = zw;_1 +yw;4+1. Note that z and y do not depend on w but only on p.
Now the part of the polygon P, (w) near the j" edge looks like an angle with
a triangle T clipped off:
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The lengths of the edges of T are w;, zw; and yw; respectively. The angle of
T opposite to the j'" edge of Py (w) measures (1 — p; — pj1)m. Together this
shows

2

Area(T) = gy sin((; + ) m)w? = 31w

Let the n + 2 parameters py, . . ., t, 1 be given by

3 3

Moy - oy =1, Bj T+ i1, B2, - - - 5 Bnd2
respectively and w' € R*+2 by
w' = (wo,...,wj_1 + TWj, Wjt1 + Ywj, ..., Wni2)

Then w' € Polg(y') and if we glue T' to Py (w) we obtain the bigger polygon
P, (w") having one vertex and edge less. Now ¢ > 0 and clearly

2Area(Py (w)) = 2Area(Py(w')) — (Viw;)?

Repeat this procedure of sticking on triangles until, after n such steps, we reach
a polygon Py (w') which is itself a triangle. (One only has to take care to avoid
a parallellogram on the way). The lengths of the edges of this triangle are all

positive linear combinations of wq, ..., w,42. Its area is quadratic in any length
of an edge. So we constructed n + 1 real functionals fy, ..., f,, on Polg(u) such
that

H(w,w) = 2Area(Py (w)) = fo(w)? — fi(w)? —... — fao(w)?

and by considering each reduction step we conclude that these functionals are
linearly independent.

Because Pol(p) N RZE? is open in Polg (i) we conclude that the latter equality
holds throughout Polg () if this open cone would be non empty. Now 0 is
contained in the convex hull of the w; and any realisation of 0 as a convex
combination with all positive coefficients yields a non zero element of the open
cone above. Hence the restriction of H to this real form is hyperbolic and hence
H is itself hyperbolic.O

Here is how the volume of M (z) relates to this hermitean form.
Theorem 2.3 For all z € X the following equality holds:
Vol(M(z)) = H(w(2), w(2)),
where w(z) € Pol(u) is given by
w(z) = (Woeop(2),wr1e1(2), ..., Wnt2ent2(2))

and the edge functions eq,...,e,o are continued analytically along any path
from z° € X toz € X.
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Proof: Take zin X. Let I' : [0,1] — X be any smooth path in X connecting 2°
and z. We deform the half line [0, oc] accordingly: Let « : [0, 1] x [0, 1] — P*(C)
be continuous such that

1. v(s,) is a smooth non self-intersecting curve for all s € [0, 1].

2. v(s,0) =0, v(s,1) = oo and ~(s,-) passes through the points I'(s); (1 <
Jj < n) in this order.

3. v(0,-) parametrizes the half line [0, oo].

Take v(-) := v(1,-) Slit P! open along v to obtain a simply connected domain
U. Let ¢(z;t) be a holomorphic branch of

n+1

[T —2)"

J=0

for t € U and let S(z;t) be holomorphic on U having ¢(z;t) as its derivative
(with respect to t) and such that S(z;0) = 0. The mapping S(z;t) resembles
the Schwarz-Christoffel mapping. Now by Stokes we have:

Vol(M(z)) = /U Qz) = 2l S(2)dS(z)

v JoU

Note that the boundary of U consists of twice the curve 7, once in each direc-
tion. Let S;“ and S;” respectively denote the images under S(z;?) of the points
20, - -, 2nt2 When we pass from 0 to oo along QU in positive and negative ori-
entation respectively.

In particular, note that Sf is the j-th vertex v;(z) (continued along I'). These
numbers satisfy:

1. S§ =8, =0and S}, =S,,,.

2. For all j, @;(SF,; — S7) = w;(S;oy — S7)
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Define w; := w](SjH - Sf) =wjej(z) for 0 < j < n+2. If we take wy 4o 1=

=St 5 = enta(z) then
w = (w07 s 7wn+2) € PO](N)

Let S;“(f) and S; () be the branches of S(z;t) on the curve segment [z, 2j11]
such that S]i(z,) = Sji and Sji(zH]) = Sﬁ_l. Then for all j there exist §; € C
such that:

S (t) = wiS; (t) + B;

Substituting this in the RHS of the Stokes equality yields (integrations are along
7):

[ s wasro - [ 5 was; <t>) -

J J

n+1 1
Vol(M (z)) = Z 5 (

n+1 Zj41 ) n+1 B
_Z / 8,24, 22— St = S7)

Hence this volume does depend only on the points S;’ (= v;(2)), noton the curve
connecting them. Replacing the subsequent connecting curves all by straight
line segments and recalling the definition of w € Pol(u) we get:

Vol(M(z)) = Area(Py(w)) — Area(P_(w)) = H(w,w)

This proves the theorem. O

2.4 Geometry and monodromy of Fp

In this section we will assume that the parameters p; are all rational. The edge
functions defined in the previous section are multivalued analytic on X C (P!)".
They span locally an (n + 1)-dimensional space over C at any point of X. By
remark 2.1 we conclude that the edges form in fact a local system on X which
gives rise to a representation of the fundamental group of X. The complement D
of X in (P')" is the union of a finite number of divisors with equations z; = z;.
The space (P1)™ has a natural stratification such that the dense open set X
is the highest dimensional stratum. The strata are indexed by partitions II of
{0,...,n + 2} satisfying

(i) Forallpe II: #p<n+ 1.

(ii) Forall pe II: #(pNn{0,n+1,n+2})<1
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We define a partial ordering on partitions such that I1; < Il iff Il is a refine-
ment, of II;. The stratum Dy for such a partition is defined by

Dn={(z1,.-,2n) € PY(C)" | 2; = 2; iff {i,5} C p for some p € 1T}

where i and j range over {0,...,n + 2}. Then the dimension of Dy in (P!)"
is #I1 — 3. Note that X is the stratum corresponding to the partitioning in
singletons and that Dy contains Dy in its closure iff TI' < TI. The edge function
is really a function F' of Nilsson class on (P')" of determination order n+ 1 and
singularities along D. However, to study the function F' it will be useful to
embed X in a different n-dimensional space, ), endowed with a stratification
such that X is the stratum of highest dimension. The strata are indexed by
partitions IT of {0,...,n + 2} satisfying

(i) Forallpe II: #p<n+1.

(ii) Forall pe II: > . pu; < 1.

JjEp

We call such partitions pu-stable or just stable. The stratum Dp will again be
of dimension #II — 3. We construct ¢ by using Geometric Invariant Theory of
Hilbert-Deligne-Mumford [MF]. Let N € N be the smallest common denomi-
nator of all p; and set m; = Npy;. Let for any m € Z, O(m) denote the line
bundle of degree m over P'. If m > 0, we can interpret sections in this bundle
as homogeneous polynomials of degree m on C?, where P! = P(C?). Let the
line bundle £ over (P!)"*3 be defined as the exterior tensor product:

n+2

£ =) 0(m,).

j=0

Now PGL(C?) acts by the diagonal action on (P')"*? and because 3 ;m; is
even, £ admits a unique structure of a homogeneous PGL(C?) bundle. With
respect to £, the semi-stable (resp. stable) points of (P!1)"*3 are given by

{(20, .-+ s 2n42) | for all j, Z pi <1 (resp. < 1)}

Z,‘:Zj
Now we take () as the geometric quotient:

Q = (P1)5hp./PGL(C)

stable

The space @ is a smooth (quasi projective) variety (e.g. see [DO, chap. 2 Thm.
2]). We embed X in @ by

(21,...,2n) = orbit of (0,21,...,2,,1,00).
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For any stable partition II, define the stratum Dp by
{(20, -+, 2n42) | 2i = 2z; iff {i,5} C p for some p € I} /PGL(C?)

This defines a stratification of () as indicated. If u; + p; < 1 for some i # j we
denote the (n — 1)-dimensional stratum Dy where II is the maximal partition
containing {7, j} by [i j].

By identifying X and its embedding in @), we can view the Nilsson class function
F' as a Nilsson class function on () with singularities along the boundary of X.
Let U C X C @ be a small simply connected neighborhood of z° € X. Let
V = V(U) denote the C-vectorspace spanned by all determinations of F on
U. Then by previously obtained results, V is (n + 1)-dimensional. By analytic
continuation we get a natural right representation of the fundamental group of
X onV:
M :m(X,2°) - GL(V)

We call this the monodromy representation. There is a canonical mapping of U
into the dual V' of V, the evaluation mapping. It is given by:

ev:U — V' ev:zw— evaluation at z

Note that ev can be continued analytically throughout X. Henceforth we will
view ev as a multivalued holomorphic mapping of X into V'. We want to
understand the behaviour of this evaluation mapping, or in fact its projective
version:

pev: X — P(V')

In particular we want to study when (i.e. for which u) this mapping has a
single valued holomorphic inverse on its image. If such an inverse exists, this
implies that monodromy induces a discrete group in PGL(V'). The idea is to
study local properties of pev first and use the results to understand the global
properties.

Theorem 2.4 The space V' admits a hyperbolic hermitean form H, invariant
under dual monodromy (the transpose of M, i.e. a left representation). More-
over, evaluation maps X into the positive part of V' (with respect to H ).

Proof: Let w again be the (multivalued) mapping

w(z) := (Woen(2),D1€1(2), .., Onta€nt2(z))

Then w(z) € Pol(u). Because eq, ..., e, span V, by theorem 2.2 there exists a
hyperbolic hermitean matrix H € Mat(n + 1, C) such that

H(w(z),w(z)) = Y Hijei(z)e;(z)

0<i,j<n
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for all z € X. Because the left hand side of this equality equals Vol(M (z)) the
right hand side is invariant under monodromy. Let g, ..., A, be the dual basis

3 3

of V' with respect to e, ...,e,. Define H(A;, A;) := H;j. This is an invariant
hyperbolic hermitean form and:

Hev(2), ev(2)) = H(Y eilz)A Y ey (2)\) =

= > Hijei(2)e;(2) = Vol(M(2)) > 0
12}
This proves the theorem. O
The subspace B of P(V') given by
B :={[v] | H(v,v) > 0}

is isomorphic to the complex unit ball in C”. By the previous theorem we
conclude that pev maps X into B.

Theorem 2.5 The mapping pev is everywhere locally biholomorphic.
Proof: Fory € X let fg,..., f, be alocal basis of determinations and y1,...,y,

some local coordinates. Then pev is locally biholomorphic at y iff the following
wronskian does not vanish near y:

f dfa Ofo
0 By1r " By
fr 9fr Of1
dy T Oyn

det !
f Ofn Ofn
I dyr T Oya

Now by remark 2.1 every determination near y is completely determined by its
value and those of its first order partial derivatives at y. This clearly implies
that the wronskian does not vanish at y. O

To examine local behavior along the singular locus, we extend the integral rep-
resentation of the edges to

{(207" .,Z,,H_l,OO) € (]P)l)n+3 ‘ #{207" .7Zn+1,00} = n+3}

by the formula
2; n+1
Eij = (2n41 — 20)17“"“/ H(S — z) M ds.
k=0
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Here integration is along any path avoiding (except in its end points) all zj.
One computes

E;j = /t*“0 (t— 1) Hnt H(t _ kTR ) “Hedt
k=1

Zn+1 — 20

(integrate along the transformed path) so E is just an extension of the edges
invariant under the stabilizer of co (linear transformations). From this integral
representation one deduces the following important lemma.

Lemma 2.2 Let J C {0,1,...,n + 2} be such that 2 < #J < n+ 1 and
Yy = Yesij < 1. Let TI denote the mazimal stable partition containing
J. Then the Nilsson class function F' only has two different exponents along
the stratum Dy. The several possibilities are listed below with their respective
multiplicities.

J satisfies: n+2—#J times | #.J —1 times
{0,n+1} ¢ JC{0,...,n+1} 0 1-%;
{O,n+1}CJC{0,...,n+1} 1— pings 2 Y7 — Unio
n+2eJc{l,...,n,n+2} Y7 — Unto 1— ppas
None of the above ;-1 0

Proof: Compute this from the extended integral representation of the edges.
O

Corollary 2.1 For a stratum as in the previous lemma and q € Dy, the limit
lim,_,, pev(z) exists and does not depend on local monodromy near q. A small
neighborhood of q intersected with Dy; will be mapped into a subspace of dimen-
sion #J — 1 of P(V') by this limiting process.

Proof: Because only evaluation upto some scalar multiple is considered, the
exponents along Dy can be shifted to obtain an exponent 0 with multiplicity
n + 2 — #J and an exponent 1 — X ; with multiplicity #J — 1. The corollary
now follows from the fact that 1 — X; > 0.0

For strata of codimension one we need the following stronger result.
Theorem 2.6 Let q € [i j] for some (n — 1)-dimensional stratum [i j] of Q.
There ezists a neighborhood @), of q, holomorphic functions qqo,...,q, on Q,

and homogeneous coordinates on P(V') such that

(i) The set [qo = 0] equals [i j] N Q.
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(i) The mapping @, — P(V"), w — (go(w) : ... : gn(w)) is biholomorphic.

(iii) The projective evaluation mapping pev on Q) is just

T—pi—pj
(Go:qi:-. :qn)— (g g i)

Proof: According to lemma 2.2 there exists a coordinate neighborhood

(Qgywi, ..., wy)

of ¢ and holomorphic functions fy., ..., f, on @, such that

(i) The set [w1 = 0] equals [i j] N Qq.

(ii) At each point of @), the functions

fo"LU?,f]-w]B7...=fn"LU]B

form a basis of determinations of F'. Here a and § are the two exponents
along [i j].

Then with respect to suitable homogeneous coordinates of P(V') evaluation on
Qg is:
T—pi—pj
pev:iw— (w; "M fo fi f)

Now it is well known that the Wronskian of fq, ..., f,, with respect to wy, ..., w,
satisfies a first order system of linear differential equations and from the explic-
itly known equations for the Lauricella function one deduces that the Wronskian
has the following form near g:

a+nB—1
h - w;

Here h is a holomorphic function which does not vanish at g. Explicitly com-
puting this wronskian using Cramer’s rule, we find that both fy and

Of1 df1

Owq e Own,

O fo Of2

Ow1 e Own,
det

0 fn 0 fn

Owq e Own,

do not vanish at ¢. By taking (), small enough, the functions

1/(1—ps—pj
o ‘= W1 - 0/( g NJ)7 @ = fioo, Qni= I

satisfy the conditions of the theorem. O
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2.5 Ramified coverings of ()

In this section we will prove the following main result of these notes:

Theorem 2.7 Suppose that for all strata [i j| of Q the exponent difference
1 — p; — pj along [i j] equals 1/my; for some m;; € N>o. Then the image of
the projective evaluation mapping is dense in B and there exists a single valued
holomorphic mapping ® : B — () such that on X one has ® o pev = idx.

We will prove this result by studying ramified coverings of ). A crucial in-
gredient of the proof is the existence of a monodromy invariant metric d on B
generating its topology. This is the so-called Poincaré-Bergman metric defined
as follows.

Definition 2.2 Define a metric d on B by:

|H (v1,v2)|
[H (v1,v1)H (v2,v9)]/2

cosh d([v1], [v2]) =

For any € > 0 denote the ball of radius € centered at b € B by B(e, b):

B(e,b) = {t' € B|d(V,b) < e}

This metric is_clearly monodromy invariant, and it generates the topology of
B. Let m : X — X be the universal covering of X. Lift pev to a (single-
valued) locally biholomorphic map pev on X. Then Aut(X|X) is isomorphic to
™ (X, 29).

Theorem 2.8 Suppose ¢ € Dy and for all strata [i j] containing q in their
closure the exponent difference 1 — pu; — pj equals 1/m;; for some m;; € N>».
Let n*(I) : X*(IT) — X be the universally ramified covering of X ramified of
order m;; along [i j]. So any m;j-fold loop around [i j] induces the identity
automorphism of X*(I) and X*(II) is universal with respect to this property.
Then the covering X*(IT) embeds in a ramified covering

i.e. X*(IT) is a submanifold of X (IT) and =*(I1) is the restriction of w(II) to
X*(I). Moreover, pev induces a locally biholomorphic mapping on X (I1), also
denoted by pev.

Proof: From theorem 2.6 it follows that the evaluation mapping is invariant
under analytic continuation along any m;;-fold loop around [i j]. Hence pev
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descends to a locally biholomorphic mapping pev on X*(II). The proof now
proceeds by induction on the dimension n. In dimension one this embedding of
coverings is just the remark that

o ox

extends to a mapping of C onto C. Let w € Dy for some stable II' > TI. Let
p1,...,ps € II' be the parts containing at least two elements. Then there are
local coordinates

on the polydisc \w_;”\ < 1 centered at w such that the strata in this polydisc are
described as the intersection structure of the hyper planes:

Y wpr=0

k<)<l

Here m ranges over {1,...,s} and and k,[ over all values such that 1 < k <1<
#pm — 1. Let A™ denote the mt" “coordinate slice”, i.e. the set of points of
which only the w™ coordinates are non-zero. Then the polydisc neighborhood
of w is a product

5 _, A/

Moreover, the stratification is compatible with this product, i.e. strata are
products of their projections on the coordinate slices. FEvery slice AP with
its stratification is isomorphic to a polydisc neighborhood on some geometric
quotient @), of dimension #p — 1 (including stratifications). For example take
p; for j € p and twice 1 — 3 Zjep i as the new #p + 2 parameters.

If no set in IT has n+1 elements, then for all points w as above the factors of such
products have lower dimension than (). This allows an inductive procedure in
this case. Let U be a polydisc neighborhood of w as before, then the universally
ramified covering of U N X embeds in a ramified covering of U, and pev extends
locally biholomorphically over this ramified covering. (Because U N X is just a
product of lower dimensional situations). The only automorphism of this local
ramified covering over U that fixes pev is the trivial automorphism because
pev is locally biholomorphic everywhere and the pre-image of w in the covering
is fixed by any automorphism. This implies that the quotient map of this
universally ramified covering of U N X to the covering X*(II) is actually an
embedding. So all local extensions fit together and we conclude that X*(II)
embeds in a covering X (II) as stated.

By theorem 2.6 the evaluation mapping extends to a locally biholomorphic map-
ping on all points of X (IT) above co-dimension one strata. Then by Hartog’s the-
orem the evaluation mapping extends locally biholomorphically to all of X (II).
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The case remains that II contains a set of n + 1 elements (i.e. {q} is itself a
stratum). By reasoning in the same way as before, we conclude that X*(II)
embeds in a ramified covering

and evaluation extends locally biholomorphically to this covering. We have to
show that it extends over the point ¢q. Let (), be a small ball neighborhood of
q and Q* a connected component of (1)~ (Q,).

By corollary 2.1 on @* the limit limx (,)_,, Pev(w) =: b is a well defined point
in B, in particular, it is fixed by local monodromy near ¢g. Let K C (), be a
compact ball around ¢ such that for any w € Q> N (7*) 1 (0K) the distance
d(pev(w), b) is at least 20 > 0. Such a K exists because pev is locally biholo-
morphic and this distance is invariant under the automorphisms of Q> | Q.
We will show that pev maps some open subset of K* := (7*)~!(K) biholomor-
phically onto the punctured ball B(§,b) — {b}. Then by Hartog 7> o (pev) *
extends over b which shows that X*(II) indeed embeds in a covering X (II) as
stated.

Take a covering sequence of compact subsets of K — {¢}
KiCcCcKsCcC...

ie. for all j, K; is contained in the interior of K;1; and U{K; | j > 1} =
K —{q}. Ife >0 apoint w € Q* will be called e-wide if pev maps some
neighborhood of w biholomorphically onto the ball B(e, pev(w)).

Lemma 2.3 For each j > 1 there exists an ¢; > 0 such that any point w €
K = (1) (K;) is ej-wide.

Proof: Consider for all N > 1 the set
Wxn ={w € | w is n-wide for some > 1/n}.
The following properties hold for these sets:

(i

(i

) Wy is an open set for all N.

) If N > M then Wn O Wjy.

(iii) Each Wy is Aut(Q*|Q,) stable.
(iv) U[Wy | N > 1} = Q.

Property (iii) follows by invariance of the distance d on B and (iv) follows
because pev is locally biholomorphic. Now all K; are compact and hence there
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exist integers 1 < N; < N, < ... such that KjX C Wy for all j. This implies
that all w € K are 1/Nj-wide. O

Let b, = pev(w) be in B(4,b) for some w € @*. Locally near b, the mapping
pev has a holomorphic inverse ¢. Let « : [0,1] — B(d,b) — {b} be any curve
in the punctured ball such that v(0) = b,. Suppose that ¢ can be continued
analytically along 7 upto (but not necessarily including) ~(¢) for some ¢ € (0, 1].
Then ¢ maps into K* because its image cannot cross 9K *. If ¢ o y(t') € KjX
for some t' € (0,t) such that d(y(t'),v(t)) < €; then by the wideness lemma,
can be continued upto and including v(t). Now this is always the case for the
only other possibility is that 7% o1 o~y tends to ¢ if ¢’ tends to ¢. But this would

imply that v(¢) = b which we assumed not to be the case.

Now b is of co-dimension at least two in B(4,b) so 7% o) extends to a holomor-
phic mapping on B(d, b) by simply-connectedness of B(d,b) — {b} and Hartog’s
theorem. This mapping extends the covering 7> over ¢, proving the existence
of an embedding of X*(II) in X (IT) as stated and pev extends locally biholo-
morphically. O(theorem 2.8)

The main theorem follows from theorem 2.8:

Proof: (Of theorem 2.7). Suppose that for all strata [i j] the exponent differ-
ence 1 — p; — p1; equals 1/m;; for some m;; € N>o. Let 7%(m) : X*(m) = X be
the universally ramified covering with ramification order m;; along [i j]. Then
pev descends to a locally biholomorphic mapping pev on X*(m) because it is
invariant under continuation along any m;; fold loop around [i j].

For any q € Dy a connected component of (7*)71(Q,) for some neighborhood
Q, is isomorphic to a connected component of X*(II) over @, because Dev is
invariant under the trivial automorphism of such a component only (by theorem
2.8). This implies that X*(m) embeds in a ramified covering 7(m) : X(m) — Q
in the same sense as before.

The (quasi projective) variety @ has a natural (projective) compactification Q
(the universal categorical quotient (Pt e /PGL(C2)). The complement
) —Q consists of a finite number of (singular) points and if ¢ = (Q—@ then pev(q)
will tend arbitrarily far away from any point in B (with respect to the metric d).
One can compute this simply using the integral representations of edges or see
the discussion in [DM]. Now a wideness argument applied to X (m) | @ as before
shows that any local holomorphic inverse of Pev extends to a global inverse on
B. Moreover pev establishes an isomorphism between (X (m), Aut(X(m)|Q))
and (B, M (m (X, 2°))).0
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2.6 Some additional results

The main theorem discussed here is not the end of the story. Suppose that for
some 1, j equality pu; = p; holds. Then interchanging coordinates 4 and j on
(P1)"*3 (numbered 0,...,n + 2) induces a transformation of . The Nilsson
class function F' of edges is invariant under this transformation. So we have
a subgroup ¥ of the symmetric group S,y3 acting on @ and stabilizing F'.
This allows one to consider the induced system F' on the quotient £\Q. The
upshot of this is that the exponent along a corresponding stratum [i j] will be
(1 — p; — pj)/2 and in fact the more general theorem becomes:

Theorem 2.9 Suppose that for all strata [i j] the exponent difference 1—p;— p;
is either 1/my; (if wi # pj) or 2/my; (if s = p;) then the evaluation mapping
pev on X\Q has a holomorphic inverse on B.

Unfortunately, this quotient will in general be singular because ¥ does not even
have to act free on X. So one has to take care of additional details to deal with
this, essentially without changing the idea of the proof of such a theorem (see
[M]). In fact, would this quotient be smooth, then the same proof as discussed
in these notes would apply. I omitted this additional theory for the sake of
keeping things more transparant.

A second important remark is that one can replace the condition that u; € (0,1)
for all j by the condition p; > 0 for all j. This would add the elliptic and
parabolic cases to our theory (if for some j, u; > 1 or p; = 1 respectively).
One can again prove the above theorem for these cases. (Now @ will just be
projective space P™). Though in addition to discussing symmetries X, one has
to do some extra work to infer invariant forms for the monodromy (which will
be definite and semi-definite respectively).

In the elliptic case, the monodromy is finite, implying that Lauricella’s Fp, is
algebraic. A holomorphic inverse for pev then exists throughout P(V'). In the
parabolic (sometimes called euclidean) case monodromy acts by affine transfor-
mations. A holomorphic inverse for pev then exists on a affine space in P(V').
In this parabolic case the constant functions always satisfy the equations of Fp!
Some work was done on these elliptic and parabolic cases, though by different
means. The question investigated is if monodromy is discrete, not if an inverse
of the evaluation exists. For example see [Sa], [CW]. Cohen and Wolfart use
arithmetic properties of monodromy to deduce finiteness or discreteness (in the
euclidean case).

It is an interesting remark that in the parabolic cases, the quotient X\@Q is
always a weighted projective space. Hence some positive results are obtained
for the conjecture in [BS] that the quotient of an affine space with respect to
a discrete cocompact action of a group generated by reflections will always be
weighted projective space. The weights are essentially just the degrees of the
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irreducible factors of ¥. Here is a list of the parabolic cases:

n | denominator | numerators | weights
2 4 41111 234

6 62211 122

6 63111 123
3 6 621111 1234
4 6 611111123456

The next section shows a list of all 102 cases in which evaluation has a globally
holomorphic inverse.

33



2.7 Tables

2

— oA A A A A A A MO AN NN AN AMNMANFHFNOFNNANANMN—~HMNMANANMNAN
wn
vOL N NN e = = MDA M T MO IO N T ANMIO M AN A
=
ﬂ ™ AN AN AN AN =~ MmAOaMF MMM MIOIIL 10 FO©I1010 o FH AN A
= [yp] T AN F AN AN MIOM F IO O H MM I I I O M~ D~ b~ - OO0 -
Z.
n. Nej O O O OV OV OV O O VXV OO AN A AN
D R T e T e TR e T e T o R e TR e R e TR e B e B e B e B e I e e T e T I |
<
# r~ AN M F 10O O~ =AM LD OIS =AM H 1O © 00 O O
oA A A A A A A A AANANAN AN ANANANANNMMNMM N MMM <t

34



IO AN FH -1 AN — AN M O© C 1o~ < O oo N -
—

010 © M~~~ 0~ © O©I100 < O 101010 I~
—

10O 1O O I~ I~~~ 00 b~ MmOy © 100 < O 1010 10 I~
—

010 O I~~~ C VI-N OO = O AN O 10O

— — — — o= AN = = A

WV r~ V0O MNIFTOMNIFTIFOOIANMN OO I

— — o= o o = = = = = AN AN AN AN

< <H 10 00 0 0 W W VOO FHFFHFOO O NN

o A = = = AN AN NN N <HE

—H AN T O I~-~00O0 OO ANM IO O -0

N < <10 1010 10 10 10 10 10 10 10

— o= = = = = AN MMM AN AN
) — = o o = )N M N AN AN
—
o
= N o o o M M MMM NN
—
o
g N N =N === MMM MmN
=
“ M ™M N F AN MA MMM I~
M ™M T 00 O - M0 OO I~ - O
d © © OO O OWOOWWDOANNNAN
D L B e S e TR e B e R
o
HH 0 © VO =AM F DO~ 0DO
o= o o~ o~ o~ AN

35



Numerators

2

2

2

2

T T

63 3

0(3 3 3 3 3 3

12

# | den.

4

9
10

Numerators

# | den.

Numerators

# | den.

Numerators

# | den.

Numerators

# | den.

36



n=29

den. Numerators

—_

6/1 1 1 1 1 1 1 1 1 1 1 1

2.8 Literature

[Al

P. Appell, Sur les fonctions hypergéométriques de deux variables. Jour.
de Math. VIIT (1882), 173-216

P. Appell, J. Kampé de Fériet, Fonctions hypergéométriques et hyper-
sphériques, Gauthier-Villars, Paris, 1926

F. Beukers, G. Heckman, Monodromy for the hypergeometric function
nFn_1, Invent. Math. 95 (1989) 325-354.

J. N. Bernstein, O.V. Schwarzman, Chevalley’s theorem for complex crys-
tallographic Coxeter groups, Funct. Anal. Appl. vol. 12 no. 4 (1978)
308-310

P.B. Cohen, J. Wolfart, Algebraic Appell-Lauricella functions, Analysis
12 (1992), 359-376

P. Deligne, G.D. Mostow, Monodromy of hypergeometric functions and
non-lattice integral monodromy, Publ. Math. THES 63 (1986), 5-90

I. Dolgachev, D. Ortland, Point sets in projective spaces and theta func-
tions, SMF Astérisque 165, 1988

F. Klein, Vorlesungen iiber die hypergeometrische Funktion. Springer
Grundlehren 39, 1981.

G. Lauricella, Sulle funzioni ipergeometriche a piu variabili, Rend. Circ.
Mat. Palermo VII (1893), 111-158

G.D. Mostow, Generalized Picard lattices arising from half-integral con-
ditions, Publ. Math. THES 63 (1986), 91-106

D. Mumford, J. Fogarty, Geometric Invariant Theory, second enlarged
edition, Erg. d. Math. 34, Springer Verlag, 1982

E. Picard, Sur une extension aux fonctions de deux variables du probleme
de Riemann relatif aux fonctions hypergéométriques. Ann. Ec. Norm.
Sup. TI, 10 (1881), 304-322

—, Sur les fonctions de deux variables indépendantes analogues aux fonc-
tions modulaires, Acta Math. 2 (1883), 114-126

3

37



[P3]

[Th]

, Sur les groupes de certaines équations différentielles linéaires, Bull.
des Sci. Math. II, 9 (1885), 202-209

B. Riemann, Beitrige zur Theorie der durch die Gaussische Reihe
F(a, 8,7, z) darstellbaren Functionen, Abh. Ko6nig. Ges. Wiss. Gottingen
Band 7

T. Sasaki, On the finiteness of the monodromy group of the system of
hypergeometric differential equations (Fp). J. Fac. Sci., Univ. of Tokyo,
24 (1977), 565-573

H.A. Schwarz, Uber diejenigen Fille, in welchen die Gaussische hyperge-
ometrische Reihe eine algebraische Function ihres vierten Elements dar-
stellt, Jour. de Crelle 54 (1873), 292-335

T. Terada, Probleme de Riemann et fonctions automorphes provenant des
fonctions hypergéométriques de plusieurs variables, Journ. Math. Kyoto
Univ., 13 (1973) 557-578.

W. Thurston, Shapes of polyhedra, preprint of the university of Minnesota,
1992

38



Chapter 3

Reflection groups

3.1 Introduction

The investigations that lead to the results in this chapter were mainly motivated
by the following three things:

1. The intriguing paper by Orlik and Solomon [OS] in which they study
(using a computer) the invariants of Shephard groups. They show that
the generating homogeneous invariants can be chosen in such a way that
their discriminant is the same as that of a related real reflection group.

2. The paper by Deligne and Mostow [DM]. In this paper they construct
groups of transformations of a complex ball generated by reflections that
act discretely. These groups arise as a monodromy group of a hypergeo-
metric function in several variables (a Lauricella Fp).

3. The work of Heckman and Opdam on hypergeometric functions and Bessel
functions associated to (crystallographic) root systems as in [H], [O] and
other papers.

The goal was to understand the results of Orlik and Solomon in an intrinsic
way as follows. Start with the complement of a discriminant of a finite real
reflection group W and try to construct the complex groups as monodromy
groups of certain special functions associated to the root system of .

This turns out to be a productive idea. The complex groups arise this way by
“altering” the orders of the generating reflections of W. We call these groups
truncated braid groups. These fall into three categories: the finite, the parabolic
and the hyperbolic groups. For each of these categories the results include:
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1. Geometric information about ramified coverings of discriminant comple-
ments.

2. Presentations for the complex (not necessarily finite) groups.

3. Chevalley like theorems on the invariants of these groups.

The results of [OS] and of Coxeter [C] (on presentations of finite complex re-
flection groups) are consequences of the theory for the finite case.

The results in the parabolic case can be related to results of Looijenga [L] and
Bernstein Schwarzman [BS]. In [BS] it is conjectured that if a group generated
by complex reflections of an affine space acts discretely and cocompactly the
quotient space is always weighted projective. Indeed, in our examples the quo-
tient is weighted projective and the weights are directly related to the degrees of
the real Coxeter group. As in [L] a Chevalley like theorem is proved for certain
rings of theta functions.

The hyperbolic case gives more examples of discrete groups acting on a complex
ball of which the quotient (and other things) can be described explicitly. Two
remarks should be made. Firstly there is a non zero intersection between this
paper and [DM]. The theory for classical root systems can be translated to the
theory of Lauricella’s Fjp. Details will appear in a seperate article. Secondly,
at the moment not all hyperbolic cases are treated in all detail. For several
groups the ball quotient will no longer be a weighted projective space. The
algebraic construction of these quotients similar to Geometric Invariant Theory
is only sketchy on some points. Results upto this point are discussed in the next
chapter.

The results for n = 2 are (more or less) analogous to those of Milnor in [N] on
covering spaces of Pham-Brieskorn varieties.

The rough plans for the development of the theory were laid out by G. Heckman.
I would like to thank him for his enormous support. I would also like to thank
E. Looijenga, J. Steenbrink and H. de Vries for several interesting discussions
and reading of the manuscript.

3.2 Coxeter groups, braid groups and reflection
representations

First we introduce some concepts from the theory of root systems and reflection

groups Let (E,(-,-)) be an Euclidean vector space, dim(E) = n. Let V be its

complexification, V = C® E. Extend (-,-) to a bilinear form on V. Let R C E
be a normalized rootsystem of full rank, i.e. a finite set such that:

1. (a,a) =2 for all « € R.
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2. 54(8) :=0— (B,a)a € R for all o, € R.
3. Spang(R) = E.

If in addition the following holds

4. f R=R1URy and (a3, as) =0 for all a; € Ry and as € Ry, then Ry = ()
or R2 :@

then we call R irreducible. For any a € R we denote its dual in V* by «o*, i.e.
a*(v) = (a,v) for any v € V. Define the regular points in V' by:

Vet ={v e V| (a,v) #0, all @ € R}

Take a set of positive roots Rt, R = Rt U—R™T and simple roots a1, ...,q, €
R*. Denote the positive chamber in E by E*:

Et={veE|(v,a;) >0forallie{l,...,n}}
Denote the group generated by all reflections s,, @« € R by W:
W ={(sa|a€R)="(Say;--s5aq,)

Denote the fundamental “weights” by Ay, ...
Coxeter integers m;; by:

An, .e. (As, ;) = d;5. Define the

mj; = order(sq,; Sq;)
Then for i # j:
™
)

mij

(i, aj) = =2 cos(

We denote the Coxeter element s4,Sa, - - Sa,, of W by ¢, and the Coxeter num-
ber of W by h, i.e. order(¢) = h. If R is irreducible the exponents of W are
written mq, ..., m,,.

The matrix M = (m;;) is called the Cozeter matriz of R. Such a matrix can be
denoted graphically as follows. Take n vertices vy,...,v,. Whenever m;; > 2
for some i # j, connect v; and v; by an edge, moreover, if m;; > 3 write this
number along the edge. We will identify the diagram and the matrix, so we
can speak of a Coxeter diagram M with Coxeter integers m;j, etc. Next we

introduce a braid group associated to M.

Definition 3.1 For a,b in some group or algebra and m € N, we define (a, b)™
by:
(a,b)™ = (ab)® if m is even

(a,b)™ = (a,b)™  -a if m is odd
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The braid group B(M) associated with the Cozeter diagram M is the group
defined by gemerators and relations as follows:

The element g1ga - - - gn is called a Coxeter element in B(M).

Lemma 3.1 Take i,j € {1,...,n} and i # j. The following statements are
equivalent:

1. The two generators g; and g; in B(M) are conjugate.

2. The vertices v; and v; are still connected in the diagram M if we erase all
edges along which there is an even number.

3. The simple roots a; and a; are in the same W -orbit.

Proof: Equivalence of 1 and 2 is proved as in [B, Ch. IV, §1, prop. 3] (Take
S ={g1,...,9n} and use m;; instead of the order of g;¢;). Now «; and «; are
in the same W-orbit if and only if s,, and s,; are conjugate which is equivalent
to 2 by the same proposition. O

The following structure theorems of Chevalley and Brieskorn are of fundamental
importance:

Theorem 3.1 (Chevalley) The algebra of W -invariant polynomials on V is
itself a polynomial algebra, i.e.:

PVIY =[P, ..., P,

Here Py, ..., P,, are homogeneous of degree d; :== m;+ 1 and satisfy no algebraic

relation. The orbit-space W\V is therefore isomorphic to an affine space [Ch].

Definition 3.2 The polynomial D € C[X,,...,X,,] given by

is called the discriminant of R. The zero locus [D = 0] is denoted by A. The
complement of A in C" is denoted by X .

The projection
P:V-C' P:ov— (P(v),...,P,(v))

is a ramified covering of degree |W| with branch locus A. The automorphism
group of this covering is exactly W.

The C*-action on the vectorspace V induces a C*-action on C”:
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Definition 3.3 Let z = ged(dy, do,...,dy,) be the order of the center of W,
(i.e. z € {1,2}). Define a C*-action by:

Yy (z1,29,...,1,) = (ydlazhyd?azQ,...,yd"azn), any y € C*

The quotient C*\(C*\{0}) will be denoted by Py(C"). It is called a weighted
projective space with weights d;/z.

Note that P(y -v) =y - P(v) for any y € C* and v € V, so the action restricts
to an action on X.

Definition 3.4 Let I C {1,2,...,n} have m elements. The subset
{P(v) |veV, (aj,v) =0 iff i € I}

of A is called a (n — m)-dimensional facet and if I = {i} a type i reflection
plane. The union of all (n — 1)-dimensional facets is called the set of subregular
points.

Theorem 3.2 (Brieskorn) Pick a basepoint z, € EY, and write y, = P(z,).
The fundamental group m (X, y,) is isomorphic to B(M). Moreover, if we define
loops G by

eﬂ'it -1

G.i : [0= 1] - X, Gj(t) = P(wo + (mma.i)aj)

then the homotopy classes of these loops generate the fundamental group and
the map G; — g; extends to an isomorphism.

Remark 3.1 IfY : [0,1] — X is given by

2wit

Y(t) = Ple™= z,)

then Y is homotopic to (G1Gs - --Gn)h’/z. In particular the latter element is
central in the fundamental group. Moreover it even generates the center [D1].

We will now introduce marked Coxeter diagrams and truncated braid groups.

Definition 3.5 A marked Coxeter diagram is a Coxeter diagram M as before
together with n integers p1,...,p, all at least 2 such that p; = p; if the vertices

v; and v; are connected in the mod 2 reduced diagram M. A marked diagram is
graphically denoted by attaching the number p; to the vertez v; if p; > 2.

From now on, we will write (M, p1,...,p,) or simply (M, p), when referring to
a marked diagram.
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Definition 3.6 The truncated braid group B(M,p) associated to a marked di-
agram (M, p) is a group given by generators and relations as follows:

B(M,p) ={g1,---,9nl(9i,9;)™" = (g95.9:)™", 97" =e, 1<i<j<n)

We now construct a holomorphic family of representations of the braid group
B(M), the so-called reflection representation. Throughout these notes, (,, de-
notes the primitive root of unity exp(2wi/m).

Definition 3.7 A multiplicity parameter k : R — C is a map which is constant
on W-orbits in R. We denote the space of all multiplicity functions by K. For
k € K we will sometimes write k; instead of ky, .

As a C-vector space, K is isomorphic to C if ¢ is the number of W-orbits in R
(i.e. t € {1,2}).

Definition 3.8 The restricted multiplicity parameters are defined by:
K' = {keK|0< Re(k;) <%, for all i}U
{ke K| — 1< Re(k;) <%, for all i}

Then for all k € K' and i,j such that m;; > 2:

Re(2(cosm(k; — kj) + cos ) >0

mij
We define holomorphic functions on K' by:
q; = exp(—2nik;), for all j

q” +q;'"” Iji=j

—(2(cosm(k; — kj) + cos %))1/2 Ifi #j and m;; > 2
Here we take 11/2 = 1.

Observe that h;j(k) # 0 if m,;; > 2 for all £ € K'. We will denote the canonical
basis of C™ by eq,...,emn.

Definition 3.9 Let for all i, the matriz r; € Mat(n, O(K'")) be given by:

(ri)mj = Omj — 6mz‘q;/2hz‘j
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Theorem 3.3 The map ¢ : {g1,...,9n} — Mat(n,O(K')) mapping g; to r
extends to a anti-homomorphism on B(M), i.e. a map o such that 9(g192) =
0(92)o(g1). Moreover, if k € K' is real-valued, then the matrix H = (h;;) is
real-valued at k, symmetric and satisfies:

!

'o(9) Helg)| (k) = H(K), all g € B(M)

Proof: Asin [CIK, 9.1 & 9.3] if one takes B(a,,a;) = h,s and u, = ¢, '. O

Note that for any k& € K’ the specialisation o(k) is a right representation on
C". The matrix r;(k) is a complex reflection with special eigenvalue —g; (k). If
k € K'is real-valued then r;(k) is unitary with respect to H (k). Note that if we
set k; = 0 for all i, we just get the geometric right representation of a Coxeter
group (w.r.t. a basis of simple roots), in particular H(0) = ((ai, a;)).

Remark 3.2 Suppose we are given two complex reflections ay, ay in C?:
ai(e;) = ej + sije;
If these reflections satisfy a braid relation of m factors then one can prove that
S12821 = 1 + @2 + (C + Cil)%l/Qq;p

where q; = —(1 + s4) and ¢ is a m*™ root of unity. Now suppose our Cozeter
diagram M 1is a tree. Then the homomorphism o is up to conjugation the unique
one such that

1. For any k € K', and any 1 < i < n, the specialisation o(k)(g;) is a
complez reflection.

2. The special eigenvectors of o(k)(g:), i =1,...,n span C".

3. The specialisation o(0) is the real reflection representation.

One can prove this by induction on n. Consider an extremal node from the
diagram. This extremal node is connected to exactly one other node of the
diagram. This reduces the proof to a rank two situation and there one uses the
fact that s19891 # 0.

Definition 3.10 If (M,p) is a marked diagram, and we take k € K' such that
ki =1/2—1/p; for all i we define the matriz group G(M,p) by

G(M,p) = (ri(k) | 1 <i<n)

The map g; — r;(k) extends to a homomorphism on B(M,p). We call G(M, p)
the geometric realisation of B(M,p).
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We now suppose that M is connected and consists of at least two vertices.

Theorem 3.4 Define k = (k1 + ...+ kn)/n and q = exp(—27ik). Denote the
Cozeter element o(g192 -+~ gn) by cq. The characteristic polynomial of c,(k) is
given by:
n
P.,iy(T) = [T(T — a¢;")

j=1
Proof: By remark 3.1 we know that c,(k)" commutes with r1(k),...,rn(k).
This implies that it is diagonal w.r.t. the basis e1,...,e,. If m;; > 2 then
a computation shows that the diagonal entries on the places ¢ and j must be
equal. This implies that ¢, (k)" is in fact a scalar times the identity because M
is connected. Say c¢,(k)" = p-1,, then by taking determinants we see ¢"" = p",
so 1 = (™g" for some m. Setting k; = 0 for all i, shows in fact that u = ¢". So
all eigenvalues of ¢,(k) are of the form (}"q. Again considering k; = 0 finally
proves the theorem. O B

Corollary 3.1 If k € K’ then o(k) is a reducible representation of B(M) iff
q = C;ln’ for some j. Moreover, if it is reducible then the only non trivial
invariant subspace of C* is one dimensional.

Proof: Because h;; # 0 if m;; > 2 a non trivial invariant subspace of C* must
be kept pointwise fixed by generators r;(k). In particular the Coxeter element
cq(k) must have an eigenvalue 1. This is the case iff ¢ = (" for some j. On
the other hand, any eigenvector of ¢,(k) with eigenvalue 1 is kept fixed by all
reflections r;(k). This proves the corollary. O

We now consider Coxeter elements associated with subdiagrams of M. Let [
be some subset of {1,...,n} such that the subdiagram M’ of M spanned by
the vertices v;, i € I is connected. If #I = m, I = {i1,...,im} then let

Cg = 0(9ir " 9i,)

Theorem 3.5 If k € K' is such that o(k) is irreducible and cl(k) has a non
zero fized point in the subspace
C" := Spanc{e;,,... e, } CC"

then ¢} (k) is not semisimple. If ¢} (k) = S + N is its Jordan decomposition in
a semisimple and nilpotent part respectively, then rank(N) = 1.

Proof: Because g(k) is irreducible the fixed point set of the endomorphism

c!(k) is a linear subspace of dimension n—m (indeed ¢, (k) has no non-zero fixed

point). But by our assumption the fixed point set intersects C! non trivially
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(and hence in a one dimensional subspace by theorem 4). Now ¢/ (k) restricted
to the n — 1 dimensional space

C! + Fixed points

I

4 (k) itself is not semisimple.

is semisimple. Clearly 1—¢/ (k) maps C" into C” so ¢
This proves the theorem. O

For real valued k € K' we now compute the signature of the invariant Hermitean
form.

Theorem 3.6 Let the matriz H be defined as above. The determinant of H is
given by:

n

det(H) = 2" H(cos 7k + cos %)

i=1

Proof: Due to Coxeter [C2]. From an exercise in Bourbaki ([B], Ch. V, §6,
exerc. 3,4) we know that:

det(H) = g*”/Qdet(l —¢q)

Using theorem 4 we obtain:

n

def(H) — H(gfl/Z 721/24’7:11‘) —

j=1

=[I@ " =GV + 4Gy =

_ H(271/4 +21/4C2*hmj)(271/4 +gl/4<—;7;LJ) —

n

= H(g71/2 +21/2 + C;T’ll] + C;hm]) =2" H(COSWE-F cos%)
=1 j=1

Here we used the fact that m; + mp41—; = h. O
Corollary 3.2 If k € K is real valued and 0 < k; < 1/2 for all j then H(k) is

1. positive definite iff 0 <1 — hk < 1.

2. parabolic (i.e. positive semi definite with one-dimensional kernel) iff 1 —
hk = 0.

3. hyperbolic (i.e. has signature (n —1,1)) iff 1 —mo <1 — hk < 0.
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Proof: Again from the same exercises in [B] one can deduce that, in case
k; = k all 4, the eigenvalues of H are exactly 2(cosmk — cos ™%). So in this
case the signature of H can be read off as indicated. However, we know that
the determinant of H does only depend on k. Hence the signature of H does
not change if we vary k; in such a way that k remains constant. This proves the

corollary. O

Definition 3.11 If (M,p) is a connected marked diagram and k € K' is such
that k; = 1/2 — 1/p;, we call

v(k) =1— hk

the exponent of the marked diagram.

By using the well known property ([B]) that the cyclic group generated by the
Coxeter element ¢ of W has n orbits of length h on the roots R one deduces:

y(k):p%Zka

Definition 3.12 We denote the transpose of o by o*, i.e.:

0" (9) ="o(g), g € B(M)

In particular for any k € K, o*(k) is a (left) representation of B(M). Let
H* € Mat(n, O(K")) be given by:

H* = det(H)H™'

(This is well defined, moreover this is just the minor matriz of H ).

Theorem 3.7 If k € K' is realvalued, then H*(k) is a non-trivial invariant
Hermitian form for the transpose ¢*(k) at k. Moreover, if H(k) is positive
definite, then H*(k) is also positive definite. If H (k) is parabolic, then H* (k) is
positive semi-definite, and has an n—1 dimensional kernel. If H(k) is hyperbolic,
then te signature of H*(k) is (1,n —1).

Proof: Because H (k) is at least of rank n — 1, the matrix H*(k) is at least of
rank one. Then H*(k) is clearly a non-trivial Hermitian form for ¢*(k). The
statements for the elliptic and hyperbolic cases are clear. If H(k) is parabolic,
the statement follows from the equality H(k)H*(k) = 0. O

To end this section we construct the logarithmic reflection representation of
B(M). Let k € K' be such that v(k) = 0. Then g(k) has a non-zero fixed
point in C” unique upto scalar multiples. Let 5; = o(k, gj+1---gn)e; for j €
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{1,...,n}. Let z; € C be such that X := Z]. x;f; is a non-zero fixed point of
o(k). Define endomorphisms 7 (k), ..., 7, (k) of C"*! by

ri(k)e;  Ifj<n
ent1 +xie; lfj=n+1

Fik)e; = {

Then the map g(k) : B(M) — End(C"*"), a(k,g;) = 7;(k) extends to a
right representation of B(M) called the logarithmic reflection representation.
One checks that g(k, g1 gn)ént1 = €nt1 + A and hence g(k, g1 ---g,) has a
nilpotent part of rank one.

Lemma 3.2 The only non trivial invariant subspaces of the logarithmic reflec-
tion representation are CA and Spanc{e,...,e,}. Here X denotes a fized vector
(unique upto a scalar).

Proof: The logarithmic representation restricted to A := Spang{es,...,e,} is
equivalent to the reflection representation. Hence the only invariant subspaces
contained in A are {0}, CA and A. If B is a non-trivial invariant subspace
not contained in A, then B N A is at most one dimensional. hence B is at
most two dimensional and contains a vector of the form e, ;1 + a, a € A. The
endomorphism 1 — g(k, g;) maps B into BN Ce; = {0}. Hence B must be
kept pointwise fixed by the logarithmic representation. However, let the central
element act on e, 11 + a € B to obtain

o(k, (g1 gn)") (ent1 + a) = eny1 +a+ )

for some non zero x € C. This shows that every non trivial invariant subspace
is contained in A. O

3.3 The Dunkl connection

Notations as in the previous section. We will assume that the root system R is
irreducible and of full rank in E. Let (ko | @ € R) be a W-invariant multiplicity
parameter on the roots. Let 7 : W — End(H) be a representation of the Coxeter
group W. Denote the sheaf of local holomorphic sections in the trivial bundle
Vred x H over V79 by A°(H). Let

AYH) = Q' (V™) ®@0yre, A°(H)
The Dunkl connection on A°(H) is given by:
V(k): A°(H) - A'(H)

V(kh=>" Z—jda* @ (1 —7(sq))h

a>0
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Note that by describing how V (k) acts on the constant sections it is completely
determined as a connection. The action of W on V"% naturally extends to an
action on A (H) by acting as 7 on the constant global sections.

Theorem 3.8 (Dunkl) The connection V(k) commutes with the W -action
and has zero curvature, i.e. is completely integrable.

Proof: Omitted.O

We will concentrate on the case that 7 is the reflection representation of W. For
technical reasons which will become clear in a moment we take the reflection
representation on the differentials A'V rather than on V itself. In particular
A (AV) = QO ® Q. The reflection representation acts by

T(w)dA* = d(wA)*
for allw € W, A € V. Substituting this in the formula for the Dunkl connection
yields:
ko(a, N)
k)d\* = 7d d
V(k) Z o ® da*

a>0
Let &,...,&, € E denote an orthonormal basis for V. One checks that a local
section w = ), fid¢; is flat for the Dunkl connection iff

df1+Z—k ot a)(” ) o = 0
a>0

for all 7. To obtain results about flat sections we need the following lemma.

Lemma 3.3 For any \,n € V the following equality holds:
Z ka(a7 /\)(aﬂ?) = 6 : ()\777)
a>0

Here § = (k) is given by:

:gzka

n
a>0

Proof: The sum on the left hand side is a W-invariant bilinear symmetric form
on V. Because W acts irreducible on V it must be a constant § times the form
(+,+). And we deduce:

(517:2(5(&,5, Zk Za& fl) )_
i=1

a>0 i=1
=Y ka(,0) =2) ko
a>0 a>0

This proves the lemma. O
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Corollary 3.3 Ifw = )", fid¢! is a flat local section then

> &dfi = —bw
i=1
Proof: Using flatness of w we get

n

Sogdfi = Y kaw(da)da* =

i=1 a>0
== 3" [ kalen &)@, &)dE; = =6y fde} = —dw
] a>0 i

This proves the corollary. O
Denote the Euler field )~ {0, on V"9 by €.

Theorem 3.9 Let w be a flat local section and v = v(k) = 1 — o(k).

dlw(€)] = vw and Ew(E) = vw(E).
Proof: Let f; be such that w =), f;d¢?. Then

dlw(€)] = d[Z fi&] =w+ Zfi*dfi =

and
Ew(f) =€) fi& =w(&)+ ) 0, [i& =

= w(€) + D& dfi(€) = vw(€)

This proves the theorem. O

Then

Note that the second statement of the theorem just states that the holomorphic

function w(&) is homogeneous of degree v.

Theorem 3.10 The C-linear operator V(k)d on Oyres has locally an (n + 1)-

dimensional kernel everywhere on V7.

Proof: First note that f is in the kernel of V(k)d iff

ko
O\Oy + Z E(%A)(aﬂi)aa f=0

a>0

for all A\,n € V. We will call such an f a solution of V(k)d. Such a solution
is completely determined by its first order Taylor part. Hence the kernel is at

most (n + 1)-dimensional.
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Now assume that the multiplicity parameter k is such that v = v(k) # 0.
Then if w locally runs over the flat sections of V(k), the functions w(€) span
an n-dimensional subspace of the kernel of V(k)d all of homogeneous degree
v # 0. Together with the constants, this yields that the kernel is exactly
(n + 1)-dimensional. The coefficients of solutions depend polynomially on k,
so the operator V(k)d has an (n + 1)-dimensional kernel for all values of k. O

There is a nice way to reformulate this result in terms of connections. Consider
the following mapping (sheafs are over V"¢9):

Vk): 090 - Q' w2 (0s0")

V() (f +w) = (df —w) @1+ V(k)w

One readily checks that V(k) is a connection.

Theorem 3.11 The connection @(k’) is completely integrable and reqular sin-
gular along the reflection planes.

Proof: A local section f + w is flat iff w = df and V(k)df = 0. By the
previous theorem, there are sufficiently many of such f to conclude complete
integrability. That the connection is regular singular is clear from the explicit
formula for V(k).O

This result shows that the theory of regular singular integrable connections
applies to solutions of V(k)d.

Remark 3.3 One checks that a solution f of V(k)d also satisfies

- 2k,
Lz; %+~ 0a

a>0

=0

The operator between square brackets is a deformation in the parameter k of
the euclidean Laplace operator and is sometimes denoted by L(k). If R is a
crystallographic root system and k takes some specific values, L(k) turns up as
the radial part of the laplacian on the tangent space of a Riemannian symmetric
space. The operator L(k) (R defined over R, k arbitrary) was studied extensively
by E. Opdam in a paper about multivariable Bessel functions associated to root
systems [O].

Observe that the group W acts naturally on A (C & A'V) and this action com-
mutes with V(k). This enables us to construct the monodromy representation
for the quotient W\V"% by analytic continuation of solutions of V(k)d.

Take v € V"9, k € K. Consider Vd as an operator on the stalk of holomorphic
germs O ,) (i.e. view the parameter k£ in V as an additional variable). It
is well known that the solutions then form a free O module of rank n + 1.
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Hence local solutions of Vd near v can be considered as a vector bundle F,
over K. Any w € W induces a canonical vector bundle isomorphism ¢* of F,
onto Fy(y)- If S is a regular W-orbit we can identify the bundles F,, v € S
by the isomorphisms ¢*. This yields a vector bundle Fg over K of rank n + 1.
The fibre of Fs at k € K will be denoted by Fs(k). Lifting loops in W\V "9
to W by the projection together with analytic continuation yields a canonical
anti-homomorphism

p:m (W\V"™ S) = B(M) — End(Fs).

By specialising k we get a right representation p(k) on the vector space Fg(k).
We write p(k,g) for p(k)(g). To study these representations we will compute
the exponents of V(k)d along the reflection planes.

Lemma 3.4 Suppose k € K'. Along a plane a* = 0, the exponents of V(k)d
are 0 with multiplicity n and 1 — 2k, with multiplicity one.

Proof: That these are the only two exponents occuring along a* = 0 follows
by letting L(k) act on a solution of the form (a*)¢f for some exponent € and a
holomorphic function f. If we take k = 0 then solutions are just polynomials
of degree at most one, i.e. exponents 0 and 1 appear with multiplicity n and 1
respectively. Because the exponents 0 and 1 — 2k, do not coincide if k ranges
over K', these multiplicities can not change. O

Theorem 3.12 Let k € K' and 1 — my < Re(v(k)) < 1. If v(k) # 0 then
p(k) is equivalent to the sum of the trivial representation and the reflection
representation (k) of B(M) (as right representations). If v(k) = 0 then p(k)
is equivalent to the logarithmic reflection representation.

Proof: If v(k) # 0 then the representation p(k) splits in the trivial for the
constant, function and an n-dimensional for the homogeneous degree v part.
However, p(k,g;) is a complex reflection with eigenvalue —g;, and for k = 0,
p(0) splits as indicated. The (continuous) deformation in % can only be done in
one way as we observed in the previous section. This settles the v # 0 case.

If v(k) = 0 then for any V(k)-flat section w we computed that djw(E)] = 0.
Hence w(€) is a constant for all such sections. At any point in V"¢ the value
of a V(k) flat section can be prescribed freely, showing that w(&) is not zero for
all flat sections. The exterior derivative d maps the solutions of V(k)d onto the
V (k) flat sections. A solution f is homogeneous of degree 0 iff (df)(€) vanishes at
some point in V" (because it is then constant and equal to zero). However, at
any point in V"¢ the first order part of f can be prescribed freely. This implies
that the solutions of V(k)d of homogeneous degree v(k) form an n-dimensional
subspace for all values of k. The vector space of germs of homogeneous solutions
of V(k)d at v € V"9 is denoted by &, (k).
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The operator £ — v(k) is an endomorphism of Fg and its kernel is a subbundle
of Fs of rank n, invariant under monodromy. Denote this bundle by £g. As
endomorphism of £g, the element p(g; - - - gn) has the characteristic polynomial:
n
LT -
=1
Specializing & in this polynomial at some fixed value, always yields a polynomial
with n distinct roots. Note that bundles over K are trivial and hence there exists
a global non vanishing section f. € I'(Fg) such that
(k)
p(gl e 'gn)fc = eXp(Qﬂ'ZT)fC
The vector f.(k) being unique up to a scalar multiple, we may assume that
fe(k) =1 (as a constant function) if v(k) = 0. Similarly we get non vanishing
sections eq,...,e, on K' in £g such that
n
plgie; =D _(ri)ije
1=1
for all ¢, j. Consider the function

fc_l

=m

Note that it is in O ¢,}, because f. — 1 vanishes identically if v(k) = 0. By
continuity in k, we conclude Vdf = 0, so /£ is in fact a global section in the
bundle Fs. Analytic continuation gives:

exp(2miv(k)/h)f. — 1
v(k)

()

_ exp(?m"/h exp(2miv(k)/h) — 1

v(k)

plgr - gn)l = )+

For v(k) = 0 we get

211

Pk, g1 gn)l(k) = L(k) + —
Similarly one shows that (continuing £(k) through V"¢9)
Lk, xX) = Lk, ) + log(x)

for all z € C*, A € V"*9. All transformations p(g,) are complex reflections and
the action of p(g1 - -- gn) on £ shows in particular that if (k) =0

1 € Spanc{ei(k),...,en(k)}

This implies that the functions e;(k) are linearly independent (over C) because
up to a scalar there is exactly one linear combination of these functions which
is monodromy invariant. This shows that p(k) is the logarithmic reflection
representation if v(k) = 0. O
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3.4 The evaluation mapping

Let S be a regular W-orbit and U a simply connected neighborhood of S in
W\V7res. By identifying the dual bundles F;, v € S by the duals of the iso-
morphisms ¢" we get the dual bundle F§. We identify = (W\V"%,S) and
B(M) using Brieskorn’s theorem and sometimes call elements of B(M) loops.

Transposing p yields a (left) representation
p* : B(M) — End(F3).

There is a canonical holomorphic mapping ev : K x U — F§ into the dual
bundle given by:

1. For all w € U, k — ev(k,u) is a global section in F§.

2. ev(k,u)(f) := f(u). Here f is an element of the fibre Fg(k).

Note that the evaluation f(u) in 2 is well defined and indeed defines a section
in F35.

The name ev stands for evaluation. This evaluation mapping extends to a multi
valued holomorphic mapping ev of K x (W\V7¢9) into F§. For fixed k € K we

denote by ev(k) the multi valued holomorphic mapping ev(k, ) of W\V "¢ into
the dual of the fibre Fg(k).

Before stating some properties of the evaluation mapping we introduce the
Wronskian of V(k)d. Let A1,...,\, € V be a basis and let fy,..., f, be a
basis of local solutions of V(k)d.

Definition 3.13 The Wronskian of V(k)d is defined up to non-zero scalar mul-
tiplication by:

fo Onfo .. O, fo

fi O fi .. O S
J = det

f’rl a)\lfn 8)\"fn

Note that .J is indeed independent of the choice of basis up to a non zero scalar
multiple.

Lemma 3.5 The Wronskian of V(k)d is given by:

T =] (a7) >

a>0
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Proof: From the definition of the Wronskian as a determinant one deduces
that J satisfies

o+ Lag’f)] J=0
a>0

for all ¢ € V. The proposed product formula for J satisfies all these equations.
This proves the lemma. O

By identifying W\V "¢ and X using the Chevalley projection P we will hence-
forth consider ev as a multivalued holomorphic mapping on K x X.

Theorem 3.13 For any k € K the mapping ev(k) satisfies the following prop-
erties:

1. It maps locally biholomorphically into an affine subspace A(k) of F&(k).
2. Continuing ev(k) along a loop g € B(M) yields p*(k, g)ev(k).

3. Near a subregular point x, we can pick local coordinates y1, . ..,y, and cer-

tain linear coordinates of F§(k) such that near x, the evaluation mapping
has the following form.:

1
ev(k) = (y]2 :y27"'7y1’l=1)

Proof: Evaluation of the constant function 1 at any point yields 1, proving
that it maps into an affine subspace of F¢(k) which we will denote by A(k).
That evaluation ev(k) is locally biholomorphic everywhere follows from the fact
that df for a solution f of V(k)d can be prescribed freely at any point of V7¢9.
This proves 1. Statement 2 is clear.

Near z, there are holomorphic functions
T oy |

such that none of them is (locally) divisible by the discriminant D and the
pullbacks by P of the following functions form a basis of Fw, (k) for y near z:

1.
D kg @, a1

The Wronskian takes the form (with P;,..., P, the standard coordinates on
c):
8(D.$2, ce. ,:Un)

D~ *igy - det
o ¢ ( a(PL/Pn)

) + higher order terms of D

Hence both z; and det(%) are non-vanishing near z. The following

are indeed coordinates near x:

1_py—t
ylzD'm§2 ) yY2 = T2, ., Yn = Tn
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With respect to these coordinates, the evaluation mapping can be written as
stated in 3. O

Corollary 3.4 Let y1,...,y, be coordinates near x as above. Suppose that
kj=1— 1%’ for some p; € {2,3,...}. The composition

ev(k) o (ylpJ s Y250 yn)

extends locally biholomorphically to a neighborhood of x. (It is in fact the iden-
tity mapping).

Proof: This is clear if we write ev(k) in the coordinates y1, ..., ¥y, also. O

Our local analysis of the evaluation mapping reveals its branching behaviour at
subregular points of the discriminant. We use this analysis later on to study
branching behaviour of coverings at the other singular points also.

Consider the subbundle £g of Fg introduced in the previous section. It is stable
under monodromy and hence we also have a monodromy representation p* on
£&. The natural restriction mapping

Res(k) : F&(k) — E5(k)

is a surjective intertwining operator. If v(k) # 0 the vector space Es(k) is
complemented by the constant functions in Fg(k). In this case, restriction
induces an equivalence between the annihilator of the constant functions and
£5(k).

In section 3.5 and 3.7 we will study restricted evaluation Rev := Resoev instead
of evaluation itself because the constant functions do not play an important role
there. The constants do play an important role however in the parabolic theory.
Hence in section 3.6 we will study the mapping ev.

3.5 The elliptic case

Throughout this section we assume that we have chosen the marks at the nodes
of a finite irreducible Coxeter diagram in such a way that it becomes elliptic.
This means that the exponent of the marked diagram (and hence of all its con-
nected subdiagrams) is positive, or equivalently, that the invariant Hermitean
form H for the standard reflection representation is positive definite. The cor-
responding multiplicity parameter k is given by k; = 1/2 — 1/p;.

Let 7 : X — X be the universal covering of the discriminant complement.
Identify Aut(X|X) and B(M). We lift the mapping Rev to a single valued
mapping ev : X — E%(k). Let I'(p) be the smallest normal subgroup of B(M)
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containing ¢%',..., gP". Let X,(p) := F(p)\)? Any pj;-fold loop around a
type j reflection plane induces the identity automorphism of X, (p) and it is
universal with respect to this property. The projection m induces a projection
mu  Xu(p) = X. We refer to X, (p) as the universal covering of X of local
degree p. In the elliptic case, this covering can be extended very nicely, in the
sense of the following theorem.

Theorem 3.14 Suppose k € K is given by k; = 1/2 —1/p; for some integers
pj € Zso. If v(k) > O there ezists a ramified covering m, : X,.(p) - C",
branching along A with local degrees pj, such that X,(p) = 7, ' (X) and m, is
just the restriction of w,.

Proof: During the proof we construct the commuting diagram shown in figure
3.1, consisting of covering maps and several functions related to evaluation.

ev

X Es(k)
Xu(p) — X;‘l(p) — Xrl(p)
X c'\{0} ——»

Figure 3.1: The elliptic case.

We prove the theorem by induction on the rank n. In rank one this is just the
remark that the mapping

P C* - C, 7Pz 2P

can be extended to C (with image C). Now assume that such branched coverings
exist for all elliptic diagrams of rank less than n. Take a singular point z €
A\{0}. There exist local coordinates on a neighborhood U of z such that UNX
is biholomorphically equivalent with a product

UnNX2AT xU;y x...x U

Here each U; denotes the complement of a discriminant of a parabolic irreducible
sub root system in a polydisc. For example, take the diagram of Az, number
the corresponding simple roots from left to right.

If we take x the Chevalley image of a point stable exactly under the first two
simple reflections, then a small neighborhood would look like

UNX =A; x (AT\A(4y))
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where A(As) denotes a discriminant of type As. If z is the Chevalley image of
a point stable exactly under the first and third simple reflection such a neigh-
borhood would look like:

UNX =A; x AT x A]

Where A7 denotes the punctured disc. Because the subdiagrams have lower rank
and are of elliptic type, we conclude by induction that there exists a ramified
covering

Ty - Xram(p: U) U

such that F[;] (U N X) is universal of degree p over U N X. While ev branches
with the right orders along A it descends to a locally biholomorphic function
ev, on ﬂ,}l(U N X). Moreover, considering theorem 3.13, ev,, extends locally
biholomorphically over the my pre image of all sub regular points in U.

The preimage of the non subregular part of U is stratified in strata which are all
of codimension at least two. Using the isomorphism theorem from section 1.1
we conclude that ev, extends locally biholomorphically over all of X4, (p,U)
to a mapping ev.

Every covering automorphism of X, (p,U) fixes the pre image of z € U.
Hence the only automorphism which fixes the mapping ev} is the identity. Any
connected component of the pre image 7, '(U) C X,(p) is a quotient of the
universal degree p covering 7rf]1(U N X). However, because ev} must be con-
stant on fibres of this quotient mapping, we conclude by the previous remark
that a connected component of 7, *(U) is in fact isomorphic to this universally
branched covering. Hence all local extensions fit together and we get a ramified
covering 7 : X¥(p) — C*\{0} containing X, (p) as a subcovering. Moreover,
ev, extends locally biholomorphically over all of X/ (p) to a mapping ev}.

It remains to show that we can extend X(p) over the origin. We prove this
by using a topological argument and again Hartog’s theorem. It turns out that
evy is globally biholomorphic on X (p) with image £(k)\{0}. Let e1,..., e, be
a basis of £g(k), where ey, ..., e, are chosen as in the end of section 3.3. Let
ey, ... ey be the dual basis of £5(k). As in definition 3.12 let H* (e}, e}) = H;
be a p*(k)-invariant hermitian form. We define a p*(k)-invariant metric d on
E&(k) by:

d(a,b)? := H*(a — b,a — b)

[|v]| == d(v,0)
For any € > 0 denote the ball with radius e centered at a € £§(k) by
B(e,a) :={b€ E5(k) | d(a,b) < €}
We call a point y € X(p) e-wide if it has a neighborhood X, such that ev}

maps X, biholomorphically onto the ball By(e, evi(y)). We will see that there
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exists an € > 0 such that every y € X} (p) is (||levi(y)|| - €)-wide. To find such
an e consider for each N € {1,2,...} the following set:
levy(@)]|

Xn ={z € X} (p) | = is §-wide, for some § > T}

Then one easily checks:

1. X is open for all N.
2. If N < M then X C X .

3. BEach Xy is Aut(X*(p)/C"\{0}) invariant and projects onto a weighted
C* invariant subset of C"\{0}.

4. Each z € X (p) is contained in some Xy.

Observations 1, 3 and 4 imply that the projections of the sets X form a covering
of P4(C™) with open sets. The space P4(C") being compact, this implies that
XX(p) is already covered by finitely many sets Xn,,..., Xn,, . Now 2 implies
that X*(p) = Xy for some N € {1,2,...}. Then we can take e = 1/N. It
follows that if we have an inverse for ev’ on some neighborhood of a € £4(k),
then this local inverse automatically extends to an inverse of ev) on at least
By(el|al],a). Hence every local inverse can be extended holomorphically to all

of ££(k)\{0} because this is a simply connected set.

This in turn implies that ev’ is globally injective, because {z € X (p) | evi(z) #
0} is connected. Now ev’ cannot attain the value 0, for suppose evi(z) = 0,
then ev} would be constant on the 7 fibre containing x, violating the injectivity
of evy. This proves that ev} maps X (p) biholomorphically onto £&(k)\{0}.

Let ¢ be a holomorphic inverse of ev) on £4(k)\{0}. The composition m)o¢p
can be extended to £%(k) (Hartog) revealing £%(k) as the universal branched
covering of C* branching with the prescribed indices along the subregular points.
This clearly proves theorem 3.14.0

We repeat the important observation at the end of the proof in the next theorem.

Theorem 3.15 If the marked Cozeter diagram is of elliptic type, the multival-
ued mapping Rev(k) has a single valued inverse m, : £&(k) — C*. Moreover, T,
1s the universally branched covering branching along the subregular points with
the prescribed indices p;.

Proof: O

We can now easily draw some remarkable consequences from this theorem. The
following facts were already known, but proofs for corollaries 3.6 [C] and 3.7 [OS]
where only provided by (non-trivial) case by case checkings using a computer.
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Corollary 3.5 If a marked Cozeter diagram is elliptic, the associated complex
reflection group is finite. Let z be the order of the center of W and v the exponent
of the marked diagram. Then z/v is an integer and the order of the complex

reflection group equals |W|v—".

Proof: From (weighted) homogeneity of the covering 7, we conclude that it is
finite (it is locally finite at 0 € £§(k)). The degrees of 7, are d; /v, 1 < j < n.
This shows that z/v is an integer because z = ged(dy, .. .,dy). The order of a
reflection group is the product of its degrees. Hence the order of the complex
reflection group equals |W|y—". O

Corollary 3.6 (Coxeter) A finite reflection group associated with an elliptic
connected marked Cozeter diagram has the following presentation:

(ri,...,mn | rfj =e, j€{1,...,n}

(;’niarj)mij = (Tjari)mji 1<i< 7 < n)
Here the m;; denote the Cozeter integers of the diagram

Proof: Such a group is just the group of automorphisms of the universally
ramified covering, hence isomorphic to a braid group modulo order relations. O

Corollary 3.7 (Orlik & Solomon) The primitive homogeneous invariants

of a finite complex reflection group G associated with an elliptic marked Cozeter
diagram, can be chosen in such a way that the mapping (Q1,Q2,...,Qy) is a
ramified covering of C" with branch locus A.

Proof: Just note that the covering mapping 7, is a weighted homogeneous poly-
nomial mapping. Hence its coordinates are primitive homogeneous invariants
for the reflection group G.O

3.6 The parabolic case

In this section we will assume that the marked diagram (M, p) is of parabolic
type, i.e. v = 0 and M has rank n. This implies also that all connected
subdiagrams are of elliptic type. The C*-action on X lifts to a C-action on X
according to the commuting diagram in figure 3.2.

This action is free, indeed x + 1 -z is just the action of the central element
(9192 -+ gn)" on X, which is not of finite order. Because all subdiagrams are
elliptic, there exists a universally branched covering 7% : X*(p) — C*\{0} The
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exp(2mi-) x nl ™
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Figure 3.2: C-action on X.

X

C"\{0}

Figure 3.3: The parabolic case.

C-action on X induces a C-action on X¥(p). As in the elliptic case, we can
lift the evaluation mapping to a locally biholomorphic mapping ev} on X*(p).
Hence we obtain the diagram in figure 3.3.

We pick a basis eg(k), ..., en(k),€(k) of Fs(k) as in section 2, and denote the
dual basis by e}, ... ek, £*. (So

p(k, gi)e;(k) = e; (k) + sijei(k)
etc.) One checks that the evaluation mapping satisfies
ev(k,\-z) =ev(k,z) + log - £*
for all z € X, A € C*. Hence the map ev} satisfies
evi(A-z) = evyi(z) + 2mwi) - £*
for all A € C, z € X(p). In particular, the C-action on X/ (p) is free.

To prove our main result, we need a p*(k)-invariant metric on the affine space
A(k) introduced in section 3.4.

Lemma 3.6 Let A,(k) C F&(k) denote the annihilator of the constant func-
tions. There exists a basis vy, ...,v, of A,(k) such that:

p*(gi)v; =vj + sjiv;, Forall1<i,j<n
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Proof: Define v; as s;0* + sije;. Then one checks that these v; lie in A, (k)
and satisfy the stated identities. Remains to prove that they are independent.

By lemma 3.2 every non-trivial invariant subspace of A,(k) contains C£*. The
vectors v; span such a space and hence £* is a linear combination of the v;. But
the span of v; does not equal C/* and must therefore be at least n-dimensional
(again by lemma 3.2). This proves that the v; are independent.O

By this theorem we conclude that there exists a p* invariant hermitian form H*
on A, (k). Moreover, H* can be chosen parabolic. We now define the “metric”
on A(k) and the corresponding “balls” by:

d(a,b)> = H*(a —b,a—b), a,be A(k)

Ba(e,a) = {b € A(k) | d(b,a) < ¢}, a€ A(k), € >0

Note that these balls actually are tubes. They are invariant under translation
along any multiple of £*.

We can now state and prove the main result.
Theorem 3.16 The mapping ev: maps X*(p) biholomorphically onto A(k).

Proof: Analogous to the elliptic case. We call a point z € X¥(p) e-wide if there
exists a neighborhood Y, of = such that ev; maps Y, biholomorphically onto
Ba(e,evi(z)). The claim is that there exists an € > 0 such that every point of
X} (p) is e-wide. Consider for each N € N* the following set:

r

Xy ={z € X (p) | z is d-wide for some § > 1/N}

Again these sets satisfy the following properties:

1. Each Xy is an open set.
2. Each Xy is C and Aut(X}(p)|C*\{0}) invariant.
3. If N < M, then Xy C Xy.

4. Every z € X(p) is contained in some X .

Only statement 4 needs some extra explanation. It follows by combining the
fact that ev) is locally biholomorphic and its transformation behaviour w.r.t.
the C-action on X/ (p). Now statements 1, 2 and 4 imply that the sets Xy form
a covering of the compact space P4(C") with open sets. From 3 we conclude
that X ¥(p) = Xy for some N € N*. Hence every point of X/ (p) is e-wide if we
take e = 1/N.
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Now every local inverse of ev: at evi(x) can be extended to at least the tube
Ba(e,evi(x)). Because A(k) is simply connected we conlude that ev’ admits a
holomorphic inverse on all of A(k). This proves the theorem. O

To deduce a presentation for the geometric realisation G(M,p) we need the
following lemma.

Lemma 3.7 View the reflection representation o(k) of B(M,p) as a 2n di-
mensional representation over R. Then the only non-trivial invariant subspaces
(over R) are contained in CA where X denotes a non-zero o(k)-fized vector
(unique upto a complex scalar).

Proof: Let U be an invariant subspace (over R), U # {0}. The endomorphism
1 — o(k, g;) maps into U N Ce;. Suppose U is not contained in CA then we
can assume cpe, € U for some r € {1,...,n} and some ¢, € C*. Now let
j € {1,...,n} be arbitrary. Because e, is a cyclic vector for g(k) (over C) there
is a g € B(M,p) such that (1 — o(k,g;))e(k,g)(crer) # 0. But this implies that
we may assume cje; € U for some c; € C*.

Now for any 4,7 we have
(1—o(k,9;))(1 — o(k, gi))(cje;) = cjsijsjie; € U

If 4,7 are chosen in such a way that m;; > 2 and not both ¢; and g; equal 1,
then s;;5;; is not a real number. This implies that Ce; C U and consequently
U=Cr. O

Corollary 3.8 The geometric realisation G(M,p) of B(M,p) has the following
presentation:

<T17T27'--:Tn | Tfi =€, 76{1,/77}
(ri:rj)m“ = (rj:ri)mﬂ: 1 S { <] S n
(riry - - .rn)h/z =e)

Proof: The geometric realisation as a matrix-representation is equivalent to the
restriction of p*(k) to A,(k). The matrixgroup generated by p*(k) on F§(k)
is isomorphic to B(M, p) according to the previous theorem. The kernel of the
homomorphism “restriction to A,(k)” consists exactly of all elements acting as
a translation on A(k). The set of all occuring translation vectors in A, (k) is a
discrete abelian subgroup of A,(k), denoted by L. The set L is clearly p*(k)-
invariant. Hence by the previous lemma, L is either of rank 2n, or contained
in C¢*. However L cannot be of full rank, for this would imply that C*\{0} is
compact (being a quotient of A(k)/L).

We conclude that L must be contained in C£*. Moreover, by considering the C-
action on X7 (p) one finds L = Z2Z¢*. The kernel of the restriction is generated
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® O O O ® O O
4 4 4 4 4 3 3 3
3 3 3
& O O4O
3 3 3
3
& O4O O ® O O O O
3 3 3 3 3 3 3

Table 3.1: The seven parabolic diagrams.

by p*(k, 9192 - - - 9n)"/*. Hence the presentation of B(M,p) has to be extended

by one relation exactly as stated in the corollary. O

We conclude this section by deducing a Chevalley theorem on the invariants in
certain rings of theta functions. The results are similar to those obtained by
Looijenga in [L]. Because the parabolic cases for which n equals two are directly
related to the classical theory of the Gauss function, we will restrict ourselves
to the study of the seven remaining parabolic cases, listed in table 3.1. (In the
diagram the first vertex is indicated by a cross mark.)

In each case, monodromy induces a transformation group C'(M, p) of the (n—1)-
dimensional affine space A, := A(k)/C¢*. This group acts discretely, cocom-
pactly and is generated by n affine complex reflections satisfying the order and
braid relations as indicated by the marked Coxeter diagram (M,p). The re-
flections p*(k, g2), ..., p*(k, gn) have a unique simultaneous fixed point on A,

which we will denote by f. Note that f can be taken a scalar multiple of e}
(mod £*). We will study this later on.

Observe that H* really induces a metric on Ay. Introduce the point group P
of C(M,p) as certain isometries of A, fixing f as follows. The group P will be
the image of the homomorphism

p: C(M,p) = Aut(Ay), p(g) v gv) —g(f) + f

Then p(g) fixes f and p is indeed a homomorphism. We also write p for the
pull back of p to B(M) by p*(k). Note that P is generated by p(g1),...,p(gn)

and these transformations are again complex reflections satisfying the order and
braid relations of (M, p).

Denote the translation of A, over A € A,(k)/Cl* by ty and take

A={xe A, (k)/Cl* | tx € C(M,p)}
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If A€ Athen g(f+)A) — f € Afor all g € P. Indeed if p(g,) = ¢ for g, € C
then t,p1n)—5 = gotrg, . The point group acts naturally on A,(k)/Cl* and
stabilizes A. Because C'(M,p) acts discretely on A, and P acts irreducibly even
over R (only trivial P-stable affine subspaces) we conclude that A is either {0}
or a lattice.

We can now prove the following important theorem:

Theorem 3.17 The group C(M,p) is the semidirect product of its normal
translation subgroup Tx and its point group P: C(M,p) = TaP. The group
P is isomorphic to the complex reflection group associated to the subdiagram of
M obtained by deleting the first node. Moreover A is a lattice of the form

A = Spang{p*(k,g)A | g € B(M)}
for some special eigenvector X € A,(k)/Cl* of p*(k,g1).

Proof: The subgroup of P given by (p(g2),...,p(gn)) is isomorphic to the
reflection group (ra(k),...,r,(k)) acting on C"!. One computes that in all
seven parabolic cases this reflection group already contains a complex reflec-
tion r satisfying the same order and braid relations as p(g1) € P. Because
(ro(k),...,r(k)) fixes a positive definite hermitean structure on C*~! it fol-
lows that

p(g1) € (p(g2),---,p(gn))-

Indeed the relations imply an explicit expression of such a reflection in terms of
the hermitean structure.

Now compute

plgr )P (kog)v =v + (1 p*(k, g7 ))f.
So p(g; ')p*(k,g1) is a translation over a non zero special eigenvector A of
p* (k. g1).
The statements of the theorem now follow from the remarks that p(g;') €
C(M,p) and C(M,p) is generated by p(g2),--.,p(gn) and b pr (g ) F |
Remark 3.4 [t turns out that the two crystallographic groups

C(As,4) and C(Bs,4,2)

are isomorphic. In both cases the point group is isomorphic to B(As,4) and the
lattice is generated by a special eigenvector of p*(k, go).

Remark 3.5 A complete classification of complex crystallographic reflection
groups can be found in an article by Popov [P].
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The next step is now to introduce a certain kind of theta functions on A,. Let
the inverse of the evaluation mapping on A(k) be given by:

¢ =(¢1,...,0n) : A(k) = C"\{0}

By using some properties of the evaluation mapping one deduces for all j in

{1,...,n}

1. ¢j(u+at*) = eti®¢;(u), u € A(k), = € C. (d; is the j'" invariant degree
of the real reflection group W).

2. ¢;j(p*(k,9)u) = ¢;(u) for all u € A(k) and g € B(M,p).

Let § € Fs(k) be such that £*(5) =1 and p(k,g;)8 = for j =2,...,n. Such
a (3 is unique modulo the constant functions. Consider the entire function 6; on
Ay defined by

B;(u+Cl*) = e LB g (u).

Using the properties of ¢; one checks that 6; is well defined and satisfies:
0;(p" (k,g)u) = e~ B EIDUENg; (u), g € B(M,p)

In particular 0;(gu) = 0;(u) for all u € Ay, g € P. From these transformation
formulae we see that §; is a P-invariant theta function on A, with respect to
the lattice A. Let us now study the general theory of such theta functions. In
each of the seven parabolic cases there exists a unique p*(k)-invariant positive
definite Hermitean structure (-,-) on A,(k)/Cl* satistying Im(A,A) = Z. The
alternating form Im(-,-) turns out to be non-degenerate. It is well known [SD]
that there exists a basis of A over Z such that the matrix of this alternating
form with respect to this basis takes the following form:

(%5)

Here d is a diagonal matrix diag(ty,...,t,—1) for some positive integers satisfy-
ing 1=ty | ta]|...] tn—1. These integers are called the invariant factors of the
alternating form. The invariant factors are listed in table 3.2.

Theorem 3.18 Suppose ¥ is a theta function on A, satisfying:

1. 9(u+ ) = e"@N9(u) for allu € Ay and X € A. Here L(-,\) is an affine
function for all \.

2. The function u — ¥(gu) transforms as stated in 1 for all g € P.

There is a unique € : A — Z /27, independent of 9, and a D € N such that
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1. L(u,\) = D(m(u—f, \)+ 5 (A, X)+mie(X)) (mod 27i), for allu € Ag, X € A.
2. €A+ pu) =€) + e(p) + Im(\, 1) (mod 2), for all A\, € A.

Here f denotes the P-fixed point in Ay. We call such a ¥ a P-stable theta
function of degree D.

Proof: This relies heavily on the general theory of theta functions. See for
example [SD].

Clearly L(u,\) must be of the form (u — f, LA) + Q()\) for some real linear
transformation L of A,(k)/C¢*. By P invariance one deduces that L commutes
with all p*(k,g;), 7 € {2,...,n}. This implies that L is a (complex) scalar
multiplication. Hence there is a D € C such that L(u, A) = Dr(u— f, A) + Q(N).
From the cocycle relation for L(u, \) it follows that in fact D € Z.

It is now general theory of theta functions that shows that L(u,\) must be of
the form

L(u,\) = D(n(u — f,\) + g(x, ) + wie(N)) (mod 27i)

for some P-invariant € : A — C/2Z satisfying the relation stated in the theorem.
From the explicit form of A and (+,-) one can check that in all seven parabolic
cases the function € is uniquely determined and takes values in Z /2Z. O

Corollary 3.9 For each degree d; there is a D; € N>i such that if p*(k,g)
induces ty € C then

~d(u(plk.0)8) — w(B)) = D (x(u — £.3) + T(A) + wie(X)) (mod 2r)
for allu € A,.

Proof: The theta function 8; is P-stable and transform under translation over
A by the exponential of the left hand side of this equality. Hence by the previous
theorem there exists a D; as stated. O

Note that the degree of f; equals D;. The degrees Dy, ..., D, are listed in table
3.2.

Let ©p be the set of P-stable theta functions of degree D. For all D, Op is a
finite dimensional C vector space. In fact it the dimension of ©p equals D"~}
times the product of the invariant factors of the alternating form Im(-,-) [SD].

Let
o= o
D>0
then O is a graded C algebra. The point group P acts naturally on this algebra.
Note that the algebras of P-stable theta functions are isomorphic for the two
cases (A3,4) and (Bs,4,2).

We denote the subalgebra of P-invariant theta functions by ©F.
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Theorem 3.19 For all parabolic groups except (Bs,4,2) the algebra OF equals
Clb1,...,0,]. In particular it is isomorphic to a polynomial algebra.

Proof: We do not consider the marked diagram (Bs, 4, 2) for it turns out that
(A3,4) determines the invariants in © for that case.

As coordinates of the inverse of the evaluation mapping it is clear that the ¢;
and hence the §; are algebraically independent. If 1 € OF is of degree D then
consider the function ¥ : A(k) — C defined by

I(u) = PP Y(u + Cr*)
One checks that it satisfies
1. 9(u + z*) = e*PI(u) for all u € A(k),z € C.
2. 9(p*(k,g)u) = I(u) for all g € B(M, p).

Note that by P-invariance of ¢ it suffices to check 2 for all g such that p*(k, g)
induces a translation ¢, of C. To check this use corollary 3.9 and the degrees
Dy, ..., D, as listed in the table.

Using these properties it follows that the composition Joev(k) extends to a
weighted homogeneous polynomial of degree D on C™. Hence ¢ is a polynomial
in 01:---:911- O

Remark 3.6 Similarly one can prove that the algebra of invariants of even
degree in OF related to C'(Bs,4,2) also equals C[0; ,...,60,]. (Herethef,...,0,
are the theta functions related to the diagram (Bs,4,2)).

To end this section I give a sketch of the method to compute the degrees D;.
Recall that p(k, g;)¢ = £+ zje; where the constants x; are chosen in such a way

that .
2mi

z1p(k, g2 -gn)er + 22p(k, g3 gn)ea + ...+ Tpen = 5

where the right hand side is a constant function. In particular it is the (upto
a scalar) unique monodromy fixed vector. From this we can explicitly compute

B.
Take yo,...,y, € C such that

n
z; + Zylsﬂ =0
1=2

for all j € {2,...,n}. Projection of £ onto the p(k, g2), ..., p(k, gn) fixed vectors
along the span of e, ..., e, gives

B=L+) yje;.
j=2
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Diagram E)Ifnﬁ:(aflt) factors Invariant degrees | (A, \)
Eg?;)gnd 1,2 2,3,4 p
(B3,3,3) 1,6 1,2,3 2V/3
(B4,3,2) 1,3,3 1,2,3,4 2¢/3
(Dy4,3) 1,3,3 1,2,2,3 2v/3
(Fy,2,3) 1,1,3 1,3,4,6 V3
(A45,3) 1,1,3,3 2,3,4,5.6 23

Table 3.2: Structure of the parabolic groups.

Applying e} to 27wi/h yields that we can take

for the p*(k, g2), ..., p*(k, gn) fixed vector in Ay.

Consider ty with A\ = (1 — p*(k,g; '))f a generator of A as before. Then ty is
induced by p*(k, gg1) for some g in (g, ..., gn). By corollary 3.9 we know

~d;(f(p(k.991)8) ~ F(9) = D;(5(A.A) +7ie(X)) (mod 2ri)

The real part of the right hand side can be computed from table 3.2 where (A, A)
is listed for each case. Substituting all explicit formulas in the left hand side
and considering the fact that p(k, g)8 = 8 we get:

i " m . :
,djh—:m(ml + ;yjslj) = D;(5 (A ) + mie(V) (mod 2ri).

With this result the degrees D; can be computed in each case.

3.7 The hyperbolic case

Throughout this section we assume that the connected marked diagram (M, p)
is of hyperbolic type. This means that if we define k € K by k; :==1/2 —1/p;
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then v(k) satifies 1 —my < v(k) < 0. Lift Rev(k) to a single valued mapping
ev on X. Then ev is a locally biholomorphic mapping satisfying:

ev(z-y) =™ . av(y), forallz € C, y € X

by homogeneity of Rev(k). Again we define an invariant Hermitian form H* on
E&(k), i.e. the signature of H* is (1,n — 1).

Definition 3.14 The set of vectors in E5(k) on which H* is positive is denoted
by B. The unit ball in C"~' by B. In a formula:

B={veli(k)| H (v,v) >0}

B={(x1,...,wn1) €C" [ |z 4.+ |zaa [P < 1}

Lemma 3.8 The set B is a trivial C*-bundle over B. To be precise: there is a
biholomorphic mapping
T:B—>C"xB

such that if T(v) = (z, u) then for all { € C*, 7(¢v) = (Cx, ).

Proof: Let &, ..., &, be a basis of £%(k) such that:

3 3

Note that if v € B then the &, coordinate of v (i.e. H*(v,£,)) is non-zero. This
allows the following construction of 7:

n
c Cn—
7:B—C" x B, T:ZC_jf'jH(Cn7p_]7--'7 = ])
“n

Cn

Jj=1
One easily checks that this mapping satisfies the presumed conditions. O
Corollary 3.10 The fundamental group of B is isomorphic to Z, moreover
w: 7 'o(exp(2mi-) xid): Cx B — B

is a universal covering of B.

Proof: Evident. O

The following theorem is fundamental for the hyperbolic theory. However, be-
cause the proof of it would be a little distracting at this moment, I put it in the
seperate section 3.8.
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Theorem 3.20 In case (M, p) is of hyperbolic type, the image of the associated
multivalued mapping Rev (k) is contained in B.

Proof: In section 3.8. O

Because X is simply connected, we can factor the map ev through the universal
covering of B. In this way, we get a mapping

EV:X 5CxB

satisfying ev = woEV. Now p*(k) induces a unique group G of transformations
of C x B and surjective homomorphisms

p:B(M)— G, pr:G — p*(k, B(M))

such that for every g € B(M) we obtain the commuting diagram in figure 3.4.

- EV

X CxB B
g p(g) p*(k, g)
X Cx B B

Figure 3.4: The G-action.

Denoting the C-action (y,u) — (y + z,u) on C X B by x - (y, 1), the mapping
EV also satisfies:

EV(z-y)=vz-EV(y), 2€C, ye X

Let As C A be the union of facets associated to non elliptic connected subdia-
grams of (M, p). In particular 0 € A,,. Denote the universal degree p covering
by m, : Xu(p) = X.

Lemma 3.9 The mapping EV descends to a locally biholomorphic mapping ev,,
on Xy (p).

Proof: The fact that Rev(k) maps into B together with theorem 3.13 implies
that Rev (k) maps some small neighborhood in X of a subregular point in A into
some simply connected open sub set of B. (The image cannot wrap around the
origin.) This implies that EV is invariant under continuation along any p;-fold
loop around a type j reflection plane. Hence EV descends to X.(p). O
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Corollary 3.11 The homomorphism p projects to a homomorphism
p: B(M,p) = Aut(X,(p)|X) = G
This describes the monodromy of ev,,, i.e.

evy(g-x) = plg)evu(z)

for all g € Aut(X,,(p)|X) and all = € X, (p).

Proof: O

Lemma 3.10 The covering X,(p) can be embedded in a universally ramified
covering w\ : X} (p) = C"\Ay. Moreover, ev, extends to a locally biholomor-
phic mapping evy on X*(p).

Proof: From the elliptic case we know that universally ramified extensions exist
locally above any point of C*\A,,. By using properties of ev, we can again
conclude that all these local extensions fit together and obtain X*(p). By a
similar argument as before, ev,, extends locally biholomorphically to X *(p).O

We obtained the diagram in figure 3.5.

Xu(p) — X:(p)

|

X

C"\ A

Figure 3.5: The hyperbolic case.
Before stating the main theorem of this section we investigate what happens
near a facet in A, associated to a connected sub diagram of (M, p) of parabolic

type. So suppose (by renumbering) that the sub diagram spanned by the vertices
1,...,7 is connected and of parabolic type.

Lemma 3.11 There ezists a basis e1,...,¢e;, F, f1,..., fn_j—1 of Es(k) such
that

1. The vector e is a special eigenvector of p(k,g) for all .
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2. p(k,9192---9;)F = F+2ni- f. Here f is a non zero vector in the C-span
of e1,...,e; such that f is fized by all reflections p(k, g1), ..., p(k,g;)-

3. FEvery vector f; is also fixed by all these j reflections.

Proof: This follows from theorem 3.5 in section 3.2. O

Pick a basis of £s(k) as indicated and let ef,... e}, F*, ff,...
the dual basis of £%(k).

*
: fn—j_1 denote

Lemma 3.12 Take branches of Rev(k) and f such that Rev(k,u)(f) = f(u).
Then
p*(k,g1---gj)Rev(k,u) = Rev(k,u) + 2mi - f(u)F™.

In particular f(u) # 0 and f(u)H*(£*, Rev(u)) € R.

Proof: This transformation formula follows from the fact that F' is the only
basis element that transforms non trivially under this partial Coxeter element.
Because Rev(k,u) € B we conclude that f(u) # 0 for there are no p*(k, g1 - - - g;)-
fixed vectors in B.

Write ||u||* for H*(u, ). Then by monodromy invariance of H* we get
16" (kg1 -+ - 95 Rev(k, w)||* = ||Rev(k, u)|

for all t € N. Repeated application of the transformation formula from the
lemma shows that ||F*||> = 0 and f(u)H*(F*, Rev(k,u)) € R as stated. O

Let p be a point on the facet under consideration. Then local monodromy near
p fixes the vector F™* on the boundary of B. To study the behaviour of Rev(k)
near p we use a local monodromy invariant distance function on B that measures
the distance of a point to F*. We define this distance for v € B by:

|[(F™, 0)|?

(v, v)

d(v) =

Note that it is constant on the line through v. If §(v) — 0 then v — F* in the
projective sense.

Let zy,...,z, be local coordinates near p such that the facet is described by
the equations ;41 = 42 = ... = z,, = 0. Now consider
Tjt2 In
Tise--53Tj, Y1 '= Tj41,Y2 1= yer oy Yn—j 1=
Lj+1 Tj+1
as local coordinates on the blow up of the facet. (So y1 = 0 locally defines

the exceptional divisor. The argument that follows does not depend on this
particular choice of coordinates).
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Lemma 3.13 FEachey,....ej and fi,..., fn_j—1 extends holomorphically over
the exceptional divisor. Moreover, in the coordinates x,y we can locally write

F(z,y) = (log(y1) + ¢ (z,9)) f(z,y)

for some holomorphic 1.

Proof: Recall that the exponent along the exceptional divisor is 0 with mul-
tiplicity n + 1. By general theory of connections with regular singularities we
know that

F(T/y) - log(yl)f(m,y),el,. "7€j7f17" '7fn7j71

extend holomorphically over the divisor y; = 0. We already know that f does
not vanish if ¢ # 0. Because the exponent of f along the exceptional divisor
is 0, we conclude by Hartog’s theorem that f is even non vanishing for y; = 0.
Then we can clearly write F' in the indicated form. O

Theorem 3.21 Let Rev(k) and F be branches on the local coordinate neigh-
borhood with coordinates (,y) such that Rev(k,z,y)(F) = F(x,y). Then the
distance 6(Rev(k,x,y)) tneds to 0 if y; tends to 0. Moreover, convergence is
locally uniform w.r.t. the other coordinates.

Proof: Write Rev(k,x,y) = F(x,y)F* 4+ r(z,y). Then r extends holomorphi-
cally over the divisor y; = 0. Because f(z,y)H*(F*,r(z,y)) € R and f(z,y) is
non vanishing even if y; = 0, we conclude that H*(F™*,r) is also non vanishing
for y; = 0.

Now compute the distance (arguments (x, y) are omitted in the right hand side):

5(Rev(k,z,y)) = ()l -

2Re (FH(F r)> + H*(r,r)

_ (P )P _
2Re <(10g(y1) + ) fH*(F*, r)) + H*(r,r)
[H*(F*,r)]?

2fH*(F*r) (log ly1| + Re(zﬁ)) + H*(r,7)

Now H*(F*,r) # 0 so the logarithm in the denominator will cause converge of
this distance as stated. O

Note that convergence is not only locally uniform, but also does not depend on
the choice of the particular branches (§ is invariant under local monodromy).
We can now prove the main theorem of this section.
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Theorem 3.22 If every connected proper sub diagram of (M, p) is either elliptic
or parabolic, then the mapping

evi: X (p) > CxB

1s globally biholomorphic and onto.

Proof: We need again a G and C invariant “metric” on C x B. Consider the
Poincaré-Bergman metric on B = C*\B:

|H* (v,w)]
coshd([v], [w]) = [H* (v, v) H* (w, w)]'/?

Now extend it trivially on the C-fibres:
d((w1,b1), (w2, b2)) = d(br, b2)

This “metric” is clearly G and C invariant. Define a ball (tube) w.r.t. this
metric by:
Bs(e,z) ={y € C x B| d(z,y) < €}

The proof of the similar theorem in the parabolic case has to be altered a little.
We used that P,;(C") is compact, but now we possibly left out some points by
excluding A,. To overcome this problem we cover C*\A, in a certain way by
closed sets. Let

K,ccK,ccKsCC...

be a sequence of closed subsets of C"\ A such that

1. Each K is invariant under the weighted homogeneous C* action.

2. Each set K is contained in the interior of K.

Then C*\ K is a compact subset of P4(C™).

Let X; C X} (p) be the ©* pre image of K;. Then there exists a sequence of
positive numbers e; > €2 > ... such that any point of X is ¢;-wide (w.r.t. ev}).

Suppose 7 : [0,1] = C x B is such that a local inverse ¢ of ev} near v(0) can
be continued along v upto but not including v(1). Using e;-wideness on X;
we conclude: For any j there is a parameter ¢; € (0,1) such that ¢oy(t)¢X;
for all ¢t € (t;,1). This implies that m}ogoy converges to a facet in Ay (i.e.
every C*-stable open neighborhood of that facet contains a tail of the curve).
However, if a curve in X is such that its 7 image tends to a facet in Ay, the
evy image of the curve tends to the boundary of C x B. That is to say, the ev
image tends to be at an infinite distance from any point in C x B with respect
to the given metric. This is a consequence of theorem 3.21. (It is not hard to
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see, using that converge there is locally uniform and Cauchy’s integral theorem,
that this behaviour also holds on the 7 pre image of A). In particular the ev
image of ¢oy should tend to the boundary of C x B. But this is just the curve
«y, which tends to (1) € C x B.

This contradiction shows that any local inverse of ev} can be continued through-
out C x B. Hence ev} has a single valued holomorphic inverse on C x B. This
shows that ev} maps X (p) globally biholomorphically onto C x B.O

Write v/z = —d/a, d,a € Z4, ged(d,a) =1
Corollary 3.12 Any local inverse of the multivalued mapping Rev(k) : X — B

extends holomorphically to the d-fold covering of B, and to no other covering of
smaller degree.

Proof: Let ¢ denote the inverse of ev. The map 7mfo¢p : C x B — C"\A is
globally holomorphic on C x B and the lift of a local inverse of Rev(k). Now
by the relation

evi(z-y)=vz-evi(y), r€C, ye X (p)
and the fact that for a generic point y € X (p) we have
(v y) =m (22 y) & 11 —X2 €L[2

we conclude that 7*o¢ is invariant under the action of ¢ € Z/z iff ¢ is a multiple
of d/z. Hence by dividing out the action of dZ/z on C x B, the map 7}o¢
descends to a globally holomorphic extension of a local inverse of Rev(k) on the
d-fold covering of B. It is clear that the degree d is minimal in this sense. O

Corollary 3.13 If all connected sub diagrams of (M,p) are either elliptic or
parabolic, then the geometric realisation G(M,p) of B(M,p) has the following
presentation:

(riy...,rn | mi=e, i€e{l,...,n}

(ri7rj)mij = (rj:ri)mﬂ7 1 S { <.7 S n
(rirg - --1rp)he/* =€)

Proof: The biholomorphic equivalence of X (p) and C x B shows that
B(M,p)/N = G(M,p)
where NV denotes the p pre image of the kernel of
pr: G = p*(k, B(M)) = G(M,p).

This kernel consists exactly of translations of C x B in the first factor over an
integral multiple of 1/z. Relating both C-actions on X}(p) and C x B by the
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transformation formula for ev} from the proof of corollary 3.12, we conclude
that N is generated by (9192 - - - gn)"*/*. The corollary follows. O

We conclude this section by formulating a Chevalley theorem for hyperbolic
reflection groups.

A holomorphic function f : C x B — C with the property

f(m+tz,b) =™t f(z,b), forallt € C and (2,b) € Cx B
z

can be considered as a global section in a line bundle £ over B. The group G acts
naturally on £ and the kernel of the projection of G onto G(M, p) acts trivially.
Hence £ is a G(M, p)-homogeneous bundle. Consider the graded algebra

A= (B, L&)

n>0

and let A% denote the sub algebra of G (M, p)-invariant elements.

Theorem 3.23 The algebra A of invariant sections is isomorphic to a poly-
nomial algebra Cldy, ..., dn].

Proof: Let ev : C"\A,, — Cx B be a lifting of Rev(k). Let ¢ = (¢1,...,¢n) :
C x B = C"\A, be the inverse of ev. Clearly the coordinates ¢1,..., ¢,
are algebraically independent over C. Using homogeneity of the evaluation
mapping one deduces that ¢; is a global invariant section in £2(i/2)  Now
let f € I'(B,L£®") be an invariant section (as a function on C x B). The
composition foev is invariant under monodromy and weighted homogeneous of
degree n. Hence this composition extends to a polynomial on C". This implies
that f is a polynomial in ¢1,...,¢,. O

A well known result of Selberg [Se, lemma 8] implies that G(M, p) has a normal
subgroup II of finite index that acts freely on the complex ball B. On the
smooth variety I\ B one can introduce a line bundle £ as above, homogeneous
with respect to the finite group G(M, p)/I generated by reflections. Then one
can prove a Chevalley like theorem on the invariant sections in the algebra
generated by T'(II\B, £). This is similar to the result of Milnor in [N] on the
complex disc (one dimensional hyperbolic space).

3.8 A proof of theorem 3.20

In this section we present a proof of theorem 3.20. Let e, ..., e, be a basis of £g
as in section 3.3. Denote the dual sections in £5 by ej. Defining H* (e}, €}) :=
H}; (as in definition 3.12) provides a hermitean structure on the subbundle of
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E§ over the real valued multiplicity functions Kj. To prove theorem 3.20 it
suffices to show that
H*(Rev(k),Rev(k)) >0

on X for hyperbolic k.

Now let ¢ : C* — V be an injective linear mapping such that +(C?\{0}) intersects
every reflection plane only in sub regular points. (In particular, the ¢ image is not
contained in any reflection plane.) By Chevalley projection we get a weighted
homogeneous mapping tp := Pos into C” such that its image intersects A\{0}
only in subregular points. Let ai,...,a,, be the lines in C*> which 1p maps into
A. Define a real valued function ¢ on K}, x C*\{a1,...,a,} by:

o(k,z) := H*(Rev(k,1p(x)), Rev(k,1p(z)))

Note that by monodromy invariance of H* this defines a single valued continuous
function. By the characterization in theorem 3.13 we conclude that ¢ extends
to a continuous function (also called ¢) on Kf x C*. Also note that ¢(k,-) is
homogeneous (of degree v(k)) for each k.

We now investigate if this ¢ can take on negative values. First observe that
¢(k,z) > 0if v(k) > 0. Define N by:
N i= {(k,x) € K} x € | g(k,2) < 0}

(The set where ¢ takes on non positive values.) Then N is closed. Because N is
invariant under scalar multiplication in the second factor and P(C?) is compact,
we conclude that the projection Ng of N on K}, along C? is also closed.

Now suppose k € ONg. Then ¢(k,-) > 0 and ¢(k,z,) = 0 for some z, €
C2. Suppose that v(k) > 1 — ms. By a previous remark we necessarily have
v(k) < 0. Because Rev(k) is locally biholomorphic on X and ¢p(C?*\{0}) is not
contained in a single (weighted) C*-orbit, we conclude that ¢(k,z) = 0 implies
that © € a; U. ..U a,,. Hence ¢(k, ) vanishes along some line, a; say.

By theorem 3.13 we know that at a non zero point x, in a; we can locally split
Revp := Rev(k,tp(+)) in a singular and a holomorphic part:

Revp = Revy + Revy,
In particular
1. H*(Revs, Revy) =0
2. Revy, is holomorphic in a neighborhood of z, € a;.

3. If tp(z,) lies on a type j reflection plane, then Revy is a special eigenvector
of p*(k, g;) on E&(k) (if non zero).

4. lim,_,, Revy(xz) =0
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It is a consequence of property 3 that H*(Revg, Revy) < 0. (H* is negative on
all special eigenvectors of the generating reflections.) Near z, this yields:

0 < ¢(k,-) = H*(Revs, Revy) + H*(Revy, Revy) <

S H* (Revh, Rth)

By the maximum principle (section 1.1) we conclude that
H* (R,(EVh7 Rth) >0

on a neighborhood of x,. This is in contradiction with the fact that Rev(k,z,) =
0. We conclude that if & € Nk then v(k) < 1 —ma. Now the subset of K},
for which v(k) > 1 — my is connected and not contained in Nx. We conclude
that it is disjoint from Nk . This shows that ¢(k,z) > 0if v(k) > 1 —msy. In
particular we conclude that on the ¢p image of C2, restricted evaluation maps
into B. Theorem 3.20 now follows by the remark that by varying the map ¢, the
images of tp cover X.O
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Chapter 4

Root systems and varieties

4.1 Introduction

In chapter 3 a hypergeometric system related to a normalized root system R
was introduced. It is a local system or, in Deligne’s terminology, a function
of Nilsson class on the complement of the discriminant of R. This system
depends on a multiplicity parameter £ and some conditions on this parameter
were introduced that will assure that the hypergeometric system has a discrete
monodromy group. One of these conditions is that all proper parabolic root
subsystems of R with the restricted multiplicity parameter should have a non-
negative exponent.

Studying [DM] shows that this condition is certainly not necessary in general,
though it marks an important border in the theory. One should compare this
with the theory of real hyperbolic reflection groups that act discretely and with
cofinite volume on real hyperbolic space. There is a considerable difference in
effort needed to classify such groups with at most parabolic subgroups (as in
[H]) and the general case [V].

The presented work is mainly concerned with constructions of varieties and
describing their properties. First a “Cremona” variety of a restricted Coxeter
arrangement is introduced. Then we generalize the appearance of Geometric
Invariant Theory for the root system A,, present in the work of Deligne and
Mostow [DM], to arbitrary root systems. This will result in a better under-
standing of hypergeometric systems associated to root systems with a proper
root subsystem of hyperbolic type.

Unfortunately, there remain some questions in the “invariant theory” for ar-
bitrary root systems. Therefore the final main results are still conjectural in
nature.
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The main conjecture of this chapter can be formulated as follows. Let k be a
multiplicity parameter on an irreducible root system R such that

ko =

1
Pa

N | =

for p, € N>y and a € R.

Conjecture 4.1 Suppose that v(R, k) € (1 — mq,0) where mo denotes the sec-
ond smallest exponent of R, i.e. v(R, k) is of hyperbolic type. Suppose moreover
that for any irreducible parabolic root subsystem R' C R of rank rk(R) — 1 such
that v(R', k) < 0 the following integrality condition holds:

—ER//V(RI7 k) S N21 .

Here ep € {1,2} and it equals 2 exactly if W(R) contains an element w such
that +w is a reflection fizing R'. Then the monodromy group of the hypergeo-
metric system Es(k) (cf. section 3.3) is discrete.

This results in the tables of chapter 5.

4.2 Coxeter arrangements

In this section we introduce the notion of a Cozeter arrangement. Let R be a
normalized irreducible root system of full rank in an n-dimensional Euclidean
space (E, (+,-)). Define V := C® E and extend (-, -) bilinearly to V. For a subset
U C E we define Vi := spang(U) and VV := V,j-. In particular V = Vy @ VY.
A root system R' C R is called parabolic if R' = Vg NR. For R' C R a parabolic
root subsystem we define:

R(R',R):=={SCR| R C S and S is parabolic}
S(R',R) :={S € R(R',R) | rk(S) = rk(R') + 1}
If R’ is irreducible we define
Ro(R',R) :={S € R(R',R) | S is irreducible}
So(R',R) :={S € S(R',R) | S is irreducible}
N(R',R) := #S,(R', R)

Example: The root system of type Eg contains Dj as an irreducible parabolic
root subsystem. In this case S,(Ds, Eg) contains four systems of type Fg and
three of type Dg. Therefore N(Dj5, Eg) is equal to seven.
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Fix a root subsystem R’ € R,(0, R) such that R' # 0. For every a € R\R'
the linear space a* N VE ig of codimension one in VZ . Two such roots can
have the same orthoplement in VE even if they are linearly independent. Take
a € R\R' and consider the set

{BeR| B DatnVHEY.

This is a parabolic root system of rank rk(R') + 1 containing R’. It is either
irreducible or of the form R' U {—a,a}. All roots a for which this system is
reducible form a subset (R')™ of (R)*. In fact (R')™ is a (not necessarily
parabolic) root subsystem of R. For example if R = B,, and R' = B,, for some
m < n —4 then (R)* is of type D, _,.

The hyperplanes a* NVE for a € R\R' are exactly indexed by S(R', R).

Definition 4.1 The space VE stratified by the intersection structure of all hy-
perplanes V°, S € S(R', R) is called a restricted Coxeter arrangement [OT].

Let us study the intersection structure of all hyperplanes. Take inclusion as a
partial ordering on R(R', R).

Lemma 4.1 In R(R', R) any two elements S, S’ have a least upper bound SV S’
and a greatest lower bound S A S'.

Proof: Let S,S' € R(R', R) then clearly (Vs + Vg) N R is a parabolic root
subsystem containing both S and S’. Moreover any upper bound for S and S’
must contain (Vs + Vs ) N R because it is parabolic. Because R(R’, R) is finite
S and S’ will also have a greatest lower bound.O

Lemma 4.2 If S € R(R',R) then T — TV S defines a map
S(R',R\S(R',S) = S(S,R").
Moreover, this map is onto but not necessarily injective.

Proof: If T € S(R',R)\S(R',S) then indeed rk(T'V S) = rk(S) + 1. If
S’ € S(S,R) and a € S'\S then T := (Vg + Ca) N R is an element of
S(R',R)\S(R',S) and S' = T v S. Take as an example R = By, R' = A,
S = Bs. Then one checks that this map is not injective.O

Corollary 4.1 Any element of R(R', R) is the least upper bound of a subset of
S(R',R).

Proof: Induction on the rank. If S’ € R(R',R), S’ # R' then S’ contains a

parabolic root subsystem S of corank one in S’. By induction and lemma 4.2
we find a subset of S(R', R) for which S’ is the least upper bound. O
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Corollary 4.2 The set of all intersections of hyperplanes VS in VRI, S €
S(R', R), partially ordered by reversed inclusion is isomorphic to R(R',R) (as
partially ordered sets).

Proof: This follows from corollary 4.1 and the fact that V5N ys =ysvs' o

The hyperplanes V°, S € S,(R', R) play a special role in the next section. To
prove some properties of the intersection structure of these hyperplanes we need
the following lemma.

Lemma 4.3 If a root subsystem S C R is irreducible and A C Vs is a proper
linear subspace, then S C Vg\a-

Proof: If « € AN S then S\A is invariant under reflection in a. Moreover if «
is not perpendicular to S\ A then it is contained in Vg, 4. Hence Vs = Va\ 4 &V’
with V' = Spanc{a € S | @ L S\A}. By irreducibility of S we have V' = {0}.
O

Lemma 4.4 Lemma 4.1, lemma 4.2, corollary 4.1 and corollary 4.2 still hold
if one replaces R by R, and S by S,.

Proof: If S,S" € R,(R',R) then SNS" # 0 and hence SV S’ is irreducible
proving lemma 4.1. If S € R,(R',R) and S’ € S,(S,R) then S’\S is not
perpendicular to R’ by lemma 4.3 and the fact that R’ C S’. Hence for a € S'\S
the parabolic system (Vg + Ca) N R is irreducible proving lemma 4.2. Corollary
4.1 follows from the remark that an irreducible parabolic root system contains
an irreducible parabolic root subsystem of corank one. Corollary 4.2 is then
clear. O

Remark 4.1 If S, S' € R,(R', R) then the greatest lower bound of S and S’ in
R(R', R) need not be irreducible. The irreducible component containing R' is
the greatest lower bound in R,(R', R). So the exact meaning of S A S' depends
on the context.

For S € R(R', R) we denote the complement of all VS inVS, S e S(S,R), by
H(R) or H¥. Likewise for S € R,(R', R) we denote the complement of all V'
in V5, 5" € 8,(5, R) by HJ(R) or Hy.

Let the subgroup W(R', R) of W (R) be defined as the set of elements w € W (R)
such that w)y,, = £idy,, .

Lemma 4.5 The group W(R', R) is generated by reflections keeping R' point-
wise fived and at most one element w_ € W(R) such that w_(v) = —v for all
v € Vg
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Let w_ € W(R',R) be any element such that w_(v) = —v for all v € Vg (if
such an element exists). It is well known that the group of elements fixing R’
pointwise is generated by reflections. Take w € W(R', R) and suppose that
w(v) = —v for all v € V. Then ww_ fixes R’ pointwise. Hence w = ww_ -w ™"
so w is a product of reflections fixing R’ and w_'. This proves the lemma. O

Note that V& is stable under W (R', R). Therefore the following definition of a
W (R', R)-action on V' might be unexpected.

Definition 4.2 Define a W (R', R)-action on VT by

) zes R
wo = { w() if w fizes

—w(v) otherwise
for any w € W(R',R) and v e VI,
In section 4.5 it will become clear why this is a natural action for our purposes.

Lemma 4.6 If R is not of type D,, (n odd) nor of type Eg then for any w €
W(R',R) there exists a w € W(R) fizing R' such that wv = w(v) for all
v € VE | In this case W(R', R) acts freely on H .

Proof: If R is not of type D, (n odd) or Eg then either w(v) = v for all
w € W(R',R) and v € Vg or —1 € W(R', R). In the latter case one can take
W = —w. Now the group of elements fixing R’ acts freely on H¥ . O

Lemma 4.7 If R is of type Eg and w € W(R',Eg), v € HE are such that
w.v = v then the fized points of w on VT (with respect to the dot action) form
a linear space of codimension at least two.

Proof: If w € W(R', Eg) fixes a linear subspace of V¥ of codimension one then
either w or —w is a reflection. In the first case w has no fixed points on HF by
definition. If —w would be a reflection then w fixes a one dimensional facet of
Eg in VE'. Hence —1 would be an element of the stabilizer of this facet. Now
such a stabilizer is the reflection group of a root system of one of the following
types: Ds, Ay x Ay, As x Ay X Ay or As. In particular —1 is not an element of
such a stabilizer and hence —w can not be a reflection. O

Corollary 4.3 If R' C Eg is of rank four then W (R', R) acts freely on HE (Fs).
Proof: A non trivial linear subspace in VE has corank one. O

Remark 4.2 Unfortunately an analogue of lemma 4.7 does not hold if R is of
type D,, (n odd). Consider R' of type Ay, m < n—2. Then the longest element
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inDp_1 D A, fizes a subspace of HA™ of codimension one that is not contained
in any of the spaces H°, S € S(Am, D).

We exclude the possibility for R to be of type D,, (n odd) in the rest of this
chapter. (This is really not a bad restriction because these cases are essentially
covered by type B, ).

4.3 The Cremona cone

In this section R has rank n and is not of type D, (n odd) and R’ is again a
fixed non-empty parabolic irreducible root subsystem of R. Certain varieties
associated to Coxeter arrangements are constructed. We use hypergeometric
functions associated to R to study ramified coverings of such varieties modulo
a W(R', R) action.

Forall S € S,(R', R) let s € E be avector in VE NVs normalized by (8s, s) =
2. All vectors s together span VE because R is the least upper bound for
S,(R', R). Thelinear form (-, 8s) on V' is denoted as 8%. Let ys, S € S,(R', R)
be coordinates on CNF-F) Define a map g/ g : HE — CNFEF) by

1
Y=R,R:V ((U Bg))SGSG(RI,R)-

Note that v is a smooth injective homogeneous map of degree —1. Define
I°c VE x CN(F.R) by

I’ :={(v,y) | veH¥ and y(v) = Ay for some X € C*}.

Then T'° is C*-invariant in both factors separately. Let I' ¢ VE x CN(E.R) pe
the topological closure of T'°. For a set Y C VE we define a set

T(Y):={y e CNE R | (y,y) €T for some v € Y}.

Lemma 4.8 For every set Y C VF the set I(Y) is C-invariant. If moreover
CY is closed then T(Y\{0}) is also closed. In particular T'({y}) = T({C*y}) is
closed for all y € VE

Proof: Left to the reader. O

Now T'({0}) is exactly the closure of y(HE') in CN(#"-B) We denote this closure
by Cone(R’, R) and call it the Cremona cone of the arrangement of R’ in R.

Remark 4.3 In this way I' can be viewed as a birational map between IF’(VR')
and P(Cone(R', R)).
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Example: If R = A, and R' = A,, for some 1 < m < n then S,(4,,
contains exactly n — m root systems of type A,,11. In this case Cone(A4,,
equals C*~™. More generally Cone(R', R) = CN(E.R) exactly if N(R',R)
rk(R) — rk(R').

Note that T'(HE) = T'({0}) equals Cone(R', R) (by definition). More generally
we have the following.

~— —

LA
LA

Theorem 4.1 For S € R,(R',R)\{R'} define T's := ['(H3) and take T'g :=
{0}. Take S,S' € R,(R',R) such that S # R'. Then for any v € H5 we have
I'({v}) =T's and as a variety T's is isomorphic to Cone(R',S). The intersection
FsNTg exactly equals Tgag (irreducible greatest lower bound).

Proof: Take v € HJ. Let U; C HS be a neighborhood of v such that also
U, C ’Hf. Let Uy C Vs N VE bea neighborhood of 0 such that U, is compact.
Let e € C* be small and uy € Uj, us € U, such that (ug,Br) # 0 for all
T € Ro(R',S), i.e. uy € HE(S). Then (u; + cua,y(e 'uy + uy)) € T?. The
coordinate yr of y(e 'u; +uz), T € S,(R', R), is given by:

1
— (’U’27BT)

yr =
e

(u1, Br) + e(uz, Br)

Now let € tend to 0. Then the coordinates yr for T¢S,(R’', S) tend to 0 uniformly
in uy, us while those for T' € S,(R', S) are uniformly bounded below. This shows
that if y € I'({v}) then its coordinate yp can be non-zero only if T' € S,(R', S).
On the other hand if y € Cone(R’, R) and all coordinates yr are zero for T' €
So(R', R)\S,(R', S) then it is not hard to check that y is contained in the closure
of

if T € S,(R,S)

otherwise

1
o
embedded in CV(E"-R)_ So 'y is isomorphic to Cone(R’',S) and T'sNT'g equals
Fspg. O

For S € R,(R',R) we define Gs as the complement of all I'ss in T'g, S’ €
Ro(R',S)\{S}. Tt is the yx' s-image of HEF (S) embedded in Cone(R’, R).

Vres,w.s) | u2 € HE (S)}

Theorem 4.2 Suppose y € Gg for S € R,(R', R) and let m = rk(S) — rk(R’),
i.e. m =dim(T'g). Then y has a neighborhood in Cone(R', R) which is isomor-
phic to a product

A™ x (ANGE) 0 Cone(S, R))

where A C C denotes the unit disc. In this neighborhood Gs corresponds to
A™ x {0}. In particular Gg is smoothly embedded in Cone(R', R) if and only if
N(S,R) equals rk(R) — rk(S).
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Proof: Fix v; € HS and vy € HF (S). Let Uy € HF (S) be a neighborhood of
vy and & > 0 such that

[(u, Br)| < 67" (01, Br)|
forall u e U and T € S,(R', R)\S,(R', S).

The following formulas are inspired by those for y; above. Take (u,z) €
U x (6ANGSE) 0 Cone(S, R)) and define the point y(u,z) € CNE-R) by its
coordinates:

1
itT € S, (R, S)
yr(u, z) = (u, Br) , TeS, (R R)
TTVvS

(v1, Br) + z7Vs(u, Br)

Then one can check that y(u, ) € Cone(R', R). Indeed if we take z € Cone(S, R)
given by

otherwise

(Ul 3 BT)‘S
(U] ) BT)

for T € S,(R/, )\S (R',S) and some u; € HZ (this = is well defined) then
y(u,z) is just y(e 'u; + u). The map (u,z) — y(u,z) is biholomorphic on
)
)

IrTvs =

U x (§ANSH) 0 Cone(S, R)). Moreover, y(u,z) € T(H3) precisely if 2 = 0.

Recall that N (S, R) = rk(R) — rk(S) implies Cone(S, R) = CN(SH) I N(S, R)
is greater however then 0 is a singular point of Cone(S,R). The theorem
follows.O

If we W(R',R) then w.fs = o(w, S)Bw.s for some o(w,S) € {—1,1}. Define
a W(R', R)-action on CN(F".F) hy.

W(R',R) 3w " : (ys)ses,(r.r) = (0(w,8)yu.s)ses, (k' R)

So W(R', R) acts by sign changes and permutations of the coordinates. The
important property of this action is that it makes v a W(R', R)-equivariant
map. Hence T is stable under the diagonal W (R', R)-action on VE x CN(E.R)
In particular the action on CN(F"-R) restricts to an action on Cone(R', R). In
all cases except possibly if R is of type Eg this action will be free on y(H®')
(lemma 4.6) and we call this set the regular part of Cone(R', R).

Recall that Gg has codimension one in Cone(R’', R) precisely if rk(S) =n — 1.
In this case Gg is smoothly embedded.

Theorem 4.3 Suppose S € R,(R', R) has rankn—1. An elementw € W(R', R)
acting non trivially fizes T's pointwise if and only if w acts as a reflection on VE
fizing Vs (by the dot action). In particular it is an involution on Cone(R', R).

Proof: By invariance of I' and theorem 4.1 we conclude that V' and hence V5N
V' are stable under w. Now Gs corresponds to H (S) by the w-equivariant
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map Vg 5. In particular Gg is pointwise fixed if and only if VaNV# is pointwise
fixed. Because w is non-trivial it must act as a reflection.O

Next we study the roots in (R')* and the fixed point sets on Cone(R', R) of
the corresponding reflections. If a € (R')* let I',, be the set of fixed points on
Cone(R’', R) of the reflection s, with root a.

Lemma 4.9 Suppose a € (R') and S € R,(R',R). The set T, intersects Gs
if and only if S is stable under the reflection s, .

Proof: Clearly W(R', R) permutes the sets Gs/, S’ € R,(R', R). In particular
if s, has a fixed point on Gg then Gg is stable under s,. By invariance of T
this implies that H5 and hence S is s,-stable. If a 1 S then I's is pointwise
fixed by s,. If @ € S then s, has a fixed point on #F (S) and hence on Gg
(essentially the yp g-image of the former set). O

For an arbitrary collection of such reflections the following holds.

Theorem 4.4 Let A C (R and S € R,(R',R). The reflections s,, a € A
have a common fixed point on Gs if and only if the following conditions are
satisfied.

1. The root system S is stable under every reflection s,, a € A.

2. The root system R' is an orthogonal component of the smallest element in

R(R', R) containing ANS.

Proof: Condition one states that every s, has a fixed point on Gg by the
previous lemma. Let T € R(R', R) be the smallest element containing AN S.
Let T, be the irreducible component of T containing R’. Clearly T, € R,(R', S).
Then the common fixed points of s,, « € ANS on VE are contained in V7.
Moreover HE' (S) contains common fixed points if and only if 7, = R'. Now
fixed points on Gg correspond to fixed points on HORI (S). The theorem follows.
O

In the theory of groups generated by reflections of some vector space it is well
known that the stabilizer of any point is again generated by reflections. This
fails in general for the action of W(R', R) on Cone(R', R).

Theorem 4.5 Suppose S € R,(R', R) and let y € Gs. Suppose the pair (R', R)
is not any of the following: (A1, Ap) with p > 3 odd, (4,,D,) with p < q— 2,
(A;, Eg) with j € {1,2,3}. Then the stabilizer of y in W(R',R) is the direct
product of W (S, R) and the subgroup of W (S) generated by all reflections fixing
R and y.

Proof: Let w € W(R’', R) stabilize y € Gg. Then S is w-stable. Let € € {—1,1}
be such that w(v) = ev for all v € Vg/. Then ew(v) = v for all v € Vg and
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some non-zero v € HF (S) N E. Let C be a chamber of S in Vg N E such
that C intersects the fixed points of ew in a facet of highest possible dimension.
Because ew(C) is again a chamber and ew(C)NC # () there is a g € W(S) such
that egw(C) = C. Moreover every fixed point of ew on Vg is fixed by g. In
particular g is a product of reflections in W(S) fixing R’ and y.

The transformation egw induces a diagram automorphism of S. If S admits no
non-trivial diagram automorphisms then gw € W (S, R).

Remains to consider the cases where S is of type A,, D, or Eg with a non-trivial
diagram automorphism. In these cases the automorphism is an involution and
the roots that are fixed form a root subsystem of type A][p/ﬂ, D, 1 and Dy
respectively. This restricts the possibilities to (A1, Ay), (Ap,Dy), (Dp, Dy),
(A123, Eg) and (D4, Eg). The condition that the involution should have fixed
points in ’HfI(S) and some explicit computations yield the list stated in the
theorem. O

In the remainder of this section we will always assume that the pair (R', R) is
none of those listed in theorem 4.5. In particular this implies that W (R', R) acts
freely on H® as the only possible exceptions would be (A4;,Ee), j € {1,2,3}.

To study the structure of Cone(R', R) modulo the W (R', R)-action we introduce
a function of Nilsson class on the regular part y(H® ) of Cone(R', R) related to
the hypergeometric function of the root system R.

Without loss of generality we can assume that R’ is generated by the n —m sim-
ple roots a1, ...,an_m € R for some m > 1. Let v be a regular point in E+ with
orbit W(R)v. Then the hypergeometric system Ey (g), (k) has a m-dimensional
subspace of vectors kept fixed by the reflections p(k, g1), ..., p(k, gn—m). More-
over, any germ component in &, (k) of such a fixed vector will extend holomor-
phically over any point in the space HE cV.Letz e HE NE. By restriction
we get a m-dimensional vectorspace C, (k) of germs of multivalued functions on
HE at the point z. Recall that for a multiplicity parameter k£ on R the ezponent
of R is defined as 1
v(Rk):=1— — ko € Zlk,).
(R, k) " O%% (ko]
We will need the following remarkable equality between exponents of root
systems which plays a crucial role in the sequel.

Theorem 4.6 For any irreducible root system R and any parabolic irreducible
root subsystem R' the following equality holds:
> W(S.k) - v(R' k) = v(R,k) — v(R' k)
SeS.(R',R)
Proof: Unfortunately the only proof I know at the moment is by an elaborate

case by case verification using tables of the positive roots for all root systems
R. O
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To obtain a Nilsson class function on ’y(’HRI) we want to use the map v to push
forward the system C, (k) on HE' . However, it turns out to be more convenient
to push forward a slightly altered system on HE in order to obtain nice local
properties on y(Hf'). We obtain this altered system C%* (k) by tensoring C, (k)
with the one dimensional space spanned by a germ of the multivalued function

H (62‘)11(13,,’6)71/(5,’6)

SeS.(R',R)

at z € HE. The following lemma states some important properties of this
system.

Lemma 4.10 1. Any germ in C*(k) is homogeneous of degree v(R' k).

2. For anyw € W(R', R) there is a canonical isomorphism between the vector
spaces C** (k) and CY(k). (Compare with the spaces &,(k)).

3. For a € (R")' the system C3(k) has erponents 0 and 1 — 2k, with
multiplicities m — 1 and 1 respectively along o~ NV,

4. Suppose S € R,(R',R) and rk(S) = n — 1. Then the local exponents
along H° are v(R', k) and v(R' k) — v(S, k) with multiplicities m — 1 and
1 respectively.

Proof: Clearly a germ in C2(k) is homogeneous of degree

v(R.k)+ Y. (v(R.k)—v(S,k).

SES,(R',R)

Property 1 follows by using theorem 4.6. Translation of a germ in C%(k) to
wz € HE' yields a germ in Co(k) by the properties of the system &, (k). This
proves 2. Let j > n — m be such that o; € VE | Then p(k,g;) commutes
with all p(k,¢;), i < n —m, and hence any special eigenvector of p(k,g;) is
p(k, g;)-invariant for ¢ < n — m. This proves 3. Suppose S is as in 4. We
may assume that S is generated by the simple roots a1, ..., &;,...,a, for some
j >n —m. The element p(k,g1---Gj---gn)"), h(S) the Coxeter number of
W(S), commutes with all p(k,g;), i < n —m. Hence an eigenvector of this
element with eigenvalue one (unique upto scalar multiples) is kept fixed by all
p(k,gi), i <n —m. So the exponents along H° are

pt > (R E) = v(T. k), pe{v(S k),0}
TES.(R',S)

with multiplicities m — 1 (u = v(S,k)) and 1 (u = 0). Property 4 follows by
applying theorem 4.6. O
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Now push forward the system C2'(k) by 7 to obtain the space C;((’;';(k) of germs

at y := v(z) € y(HF'). For this system one has the following (compare with
the previous lemma).

Lemma 4.11 1. Any germ in C;°"*(k) is homogeneous of degree —v(R', k).

2. For w € W(R',R) there is a canonical isomorphism of the vector space
Cyome(k) onto Cglye (k).

3. Let a € (R')*. The exponents of C;o"¢(k) along the fived points I, of the
reflection s, are 0 and 1 — 2k, with multiplicities m —1 and 1 respectively.

4. Let S € Ro(R',R) such that rk(S) = n — 1. The exponents of C;°"(k)
along Gs are 0 and —v(S, k) with multiplicities m — 1 and 1 respectively.

Proof: The map v is homogeneous of degree —1, hence the degree of C;"¢(k)
equals minus the degree of C2 (k). This proves 1. Properties 2 and 3 are clear.
Suppose S is as in 4. Take v € HS and € € VE such that v+ef € HE for small
€ # 0. The exponents in property 4 can be derived by considering the smooth
curve y(e " tv+¢£), e small, passing through Gg together with the exponents and
homogeneous degree of C2!* (k). O

Let A be the algebra of W(R', R)-invariants in the coordinate ring of the affine
variety Cone(R', R). Let AT be the maximal ideal of elements with vanishing
constant term. Take Cone(R', R)/W (R', R) := Spec(A) and think of this as a
weighted homogeneous affine variety. Then A% € Spec(A) corresponds to 0 in
this variety and we call this the origin of Cone(R', R)/W (R', R).

For a homogeneous set U we write I'V(U) for the image of ['(U)/W (R', R)
in Spec(A). The space Spec(A) has a natural stratification induced by the
intersection structure of the codimension one subspaces 'Y := TI's/W(R', R)
and TY :=T,/W(R', R). Here S ranges over the elements in R, (R', R) of rank
n — 1 and a ranges over (R').

Let Y C v(HE') denote the W(R', R)-orbit of y. As in the case of the system
&y (k), the system C (k) gives rise to a m-dimensional system on W (HE) (a
smooth subvariety) by property 2. Denote this system by C{°"¢(k). Again, mon-

odromy induces a representation p* of the fundamental group m (I'V (HF'),Y)
on the dual Cy (k) of C5°™¢ (k).

Lemma 4.12 Assume that the parameter k € K, is chosen in such a way
that both v(R,k) and v(R', k) are in the hyperbolic range. Then there exists a

positive definite p*-invariant Hermitian form on Cy (k).

Proof: The m-dimensional subspace of &y gy, (k) fixed by the first n —m
reflections p(k, g;) is the orthoplement of the span of special eigenvectors e; (k)
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upto e,_., (k) with respect to the monodromy invariant hyperbolic form. By
assumption the form restricted to this span is also hyperbolic and hence it is
definite on the orthoplement. It is also invariant on the altered system and on
its push forward. This proves the lemma. O

We are now in a position to prove the main theorem of this section. Suppose
S € Ro(R',R) has rank n — 1 and « € (R')*. Define p, := 2/(1 — 2k,) and
ps := —z/v(S, k) where z is either 1 or 2 depending on whether or not W (R', R)
contains an element that acts as an involution fixing Gg.

Theorem 4.7 Assume that both v(R, k) and v(R', k) are in the hyperbolic range
(as in lemma 4.12). Assume p, € N>o and ps € N>q for all p, and ps defined
above.

Let X, (p) = TW(HE') be the universal Galois covering of local degrees po and
ps along TV and ng respectively. Then X, (p) embeds in a ramified covering
X, (p) of Spec(A). Moreover X,(p) naturally carries the structure of a vector
space and the covering automorphism group is a finite group of linear transfor-
mations.

Proof: The proof is based on essentially the same ideas found in the proof of
theorem 3.14, page 58. Again C§{°"¢(k) induces a canonical multivalued evalua-

tion map ev from TW (H®') into the dual C% (k).

The covering X, (p) extends to a ramified covering X?2(p) over the relative in-
teriors of the codimension one divisors. By a computation of the Wronskian of
&, (k) similar to the one in the proof of theorem 3.13, page 56 one can prove
that the evaluation map lifts to a single valued immersion ev® on X2 (k).

Now one proceeds by induction on the corank of R’ in R. Let 2 be a point on
Gs for some S € R,(R', R) of rank rk(R') + m for some m > 0. By theorem 4.2
z has a neighborhood U which is isomorphic to the product

A™ x (ANSE) 1 Cone(S, R)).

Now by assumption the stabilizer of z in W (R', R) is a direct product of W (S, R)
and the subgroup of W(.S) generated by all reflections fixing R’ and z.

In particular the factors in this direct product each act in a seperate factor in the
Cartesian product for U written above. Hence the projection of z on Spec(A)
has a small neighborhood whose intersection with the regular part FW(’HR')
is also a product U; x Uy. Here U; is the complement of the discriminant of
a finite reflection group in a neighborhood of 0 and U, is the regular part of
Cone(S, R)/W (S, R) intersected with a neighborhood of its origin.

By the induction hypothesis and the results of section 3.5 one concludes that
X?(p) embeds in a ramified covering X*(p) of Spec(A)\{AT} and X*(p) is a
smooth variety.
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The map ev? extends locally biholomorphically over X*(p) to a map ev’. The
fact that monodromy of ev admits a positive definite invariant Hermitian form
implies that this extension is an isomorphism onto Cs (k)\{0}.

Then C3 (k) is a ramified covering of Spec(A) extending X, (p) and its automor-
phism group is just the monodromy group of ev. O

Remark 4.4 The condition that all stabilizers should be direct products is not
strictly necessary. The proof of the main theorem /.15 in the next section is
more general. The argument given there could be applied here as well. It turns
out however that we do not need the stronger result that would be obtained.

Remark 4.5 With the given assumptions theorem 4.7 implies that the homo-
geneous degree —v(R', k) of C§°™(k) equals z/m for some integer m > 1. Here
z 1is either 1 or 2 depending on whether or not W(R', R) contains an element
acting as —1 on Cone(R', R).

4.4 GIT and root systems

In this section we generalize the usage of Geometric Invariant Theory as in [DM]
to arbitrary root systems. The relation between our definitions and SL(2, C)-
invariants is explained in theorem 4.8.

Denote the polynomial algebra of V by P[V] and let
PV] =@ PV
d>0

be its canonical grading in homogeneous components. If V = V; @ V5 for two
linear subspaces Vi, V5 then there is a canonical isomorphism

Pivi= @ Prvil @ PI[Va).
p+qg=d

We will consider an element of the space PP[V;] ® P4[V,] as a PP[V;]-valued
polynomial on V5 homogeneous of degree g. In particular for any S € R, (0, R)
we have such a decomposition arising from V = Vg @ V5.

Definition 4.3 Let S’ C S be two elements of R,(0, R). Let
P e P'[Vs]® PV,

i.e. a P%Vg/]-valued polynomial on VS'. If P # 0 the vanishing multiplicity of
P along VS is defined by

ms(P) = maz{j € N| P € @ P'[Vs] ® P[Vs n V@ PP~V 5]},
a>j
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It is useful to define mg(0) = oo with oo > m for all integers m. The projection
of P in
Pa+ms(P) [‘/S] ® bemg(P) [VS]

is a Pet™s(P)[Vs]-valued polynomial on VS and will be denoted by Ps.
Note that if S’ has corank one in S and A € Vs N VS, A # 0 and
PeP' Vs ® PV
then P is divisible by (A*)™s(”) and no higher power of A*. Here \* denotes
the linear functional (-, A) on V5",
Lemma 4.13 Let S" C S' C S be three elements of R,(0, R) and
P e P[Vsi] @ PV
Then the following inequality between multiplicities holds:

mg(Ps ) > mg(P) — mg (P)

Proof: This follows from the decomposition
VS nVs = (Ve NV e (VS nVs).
Indeed if Ps: has a non zero component, in
P[Vsu] @ P [Vs NV @ P2[VS NVs] @ P&V
then d; = mg (P) and d; + dy > mg(P). Hence do > mg(P) — mg (P) which
implies the same lower bound for mg(Ps/). O

We can now introduce the key object for the construction, a certain algebra of
polynomials. It is convenient to define v(0, k) := 1.

Let k be a rational multiplicity parameter such that v(R, k) lies in the range
(1—ma, 0], i.e. is of hyperbolic or parabolic type (mso denotes the second smallest
exponent of R). Let N > 0 be a common denominator of the k,, i.e. Nk, € Z
for all @ € R. Then for any root subsystem S € R, (0, R) we have Nv(S, k) € Z.
Indeed any v(S, k) is an affine function in k with integer coefficients.

Definition 4.4 We define a vector space
AN(R k) :={P € P"N"BEBRV] | mg(P) > —~Nu(S, k) for all S € Ro(0, R)
of rank rk(R) — 1}
Define a C-algebra An(R, k) by
AN(R, k) = Z AdN(R, k)
d>0

If v(R, k) < O then this algebra has a natural grading (the sum in its definition
is then a direct sum). If v(R, k) =0 then An(R,k) = C.
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Before studying the structure of this algebra we first show its relation to Geo-
metric Invariant Theory as encountered in chapter 2. Take R of type A,. Use
the standard realisation of this root system in C"*'. Let ey,...,e, denote the
canonical basis of C**! and V the n-dimensional subspace of all vectors for
which the sum of their coordinates equals zero. The roots are then given by
e; —ejforl1<i,j<n+1andi#j.

Let k = m/N for positive integers m and N such that N < (n + 1)m < 2N.

Define mp42 as the remainder 2N — (n + 1)m and take m; := m for j €
{1,...,n +1}. Let 7; denote the canonical projection of (P')"*? onto the j'*
factor P! for j = 1,...,n + 2. Define a line bundle £ over (P')"*+2 as follows
n+2
L= ®7T;Op1(mj).
j=1

Consider the diagonal SL(2,C)-action on (P')"*2. Then there is a canonical
SL(2, C)-action on £ turning it into a homogeneous line bundle. We can identify
global sections in £®¢ with polynomials in 2n + 4 variables (written in matrix

form)
P 1,1 - T1np42
T21 oo T2,n42
that are homogeneous of degree dm; in the j'" column. An element g € SL(2, C)
acts on such a section by

(9P)(x) == P(g~'x)

for a matrix x and matrix multiplication in the right hand side argument.

Theorem 4.8 There is an isomorphism of algebras
A(L) = @D T((P)™+2, LSO = Ay (A, k).
d>0

Here the left hand side is the graded algebra of invariant sections in powers of

L.

Proof: Define a linear map vy, of I'((P!)"+2, £24)SL2.0 intg p=dNv(An.k)[y]
by

Ty ... Tnp 1
’}/d(P)(.’Iil,...,.’Iin+1)::P< 1] 1+] 0>

Indeed one can check that v4(P) is homogeneous of degree —dNv(A,,k) by
considering the action of diag(\, A1) for A € C*.

The SL(2, C)-orbit O of the set

{< 11 1+1 0) ‘(ml="'7wn+])€V}
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is just
{y e Mat(2 x (n +2),C) | det(y; ynt2) # 0 for all j <mn +1}

where y; denotes the j column of y. In particular this set is dense and hence
Y4 is tnjective. Remains to compute its image.

A parabolic irreducible root subsystem of A,, is of type A, for some s < n. If S
is such a system of rank s < n then there exists a subset

Ic{l,....n+1}, #I =s+1

such that V'S is just the set of all vectors in V whose coordinates ej, j € I coin-
cide. The reflection group W (A,,) acts transitively on parabolic root subsystem
hence we may assume that I is {1,...,s+ 1}. Let (z,...,%,Tsq0,...,Tnt1) €
VS and z1,...,2,.1 € C such that ng z; = 0. If P is an invariant section in
[((PY)"+2, £#4) then an elementary calculation yields for all A € C:

p T+ ... T AT Teqgz ... Tpgr 1)

1 1 0o/
—dNv(A,,k) I oo T4 Lg42 —2 ... Tpy1 — T 1
A P( 1o A A0

This shows that mg(v4(P)) > —dNv(As, k) and in particular v4(P) is an ele-
ment of Ayn(An, k). On the other hand if P € Ayn(A,, k) one can define a

function P on the dense orbit O by prescribing

P( 11 1+1 0 > = P(,’I,‘17...,-'17n+1)

and extending it by SL(2,C)-invariance and homogeneity properties. The con-
ditions on the vanishing multiplicities of P are easily seen to imply that Pis
locally bounded near any point in Mat(2 x (n+2), C). Hence P extends to an in-
variant section also denoted P. Clearly vd(lg) = P. The sequence (1,71,72,.-.)
gives the isomorphism. O

Using theorem 4.6 on page 91 we derive two important facts about the algebra
ANn(R, k).

Theorem 4.9 If P € Ajn(R,k) and S € R, (0, R) then the following inequality
holds:
ms(P) > —dNu(S, k)

Proof: This is true if rk(S) > n— 1. Now use downward induction on the rank
of S. So suppose the above inequality holds for any rank greater than m. Let S €
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R, (0, R) be of rank m. For any S' € S,(S, R) the space V5" is of codimension
one in V5. Pg is a homogeneous polynomial of degree —dNv(R, k) — mg(P) on
V'S, Moreover, by our induction hypothesis and lemma 4.13 we have:

mg: (PS) 2 —dNU(Sl7k) - mS(P)
This leads to the equation:

Y. (=dNv(S'.k) - ms(P)) < ~dNw(R, k) - ms(P)
5'€8,(S,R)
Now using the equality from theorem 4.6 this is equivalent to

mg(P) > —dNv(S, k).

The theorem follows by induction. O

When equality holds, one can make a sharper statement.

Theorem 4.10 Let S C R be a parabolic irreducible root subsystem. If P €
Agn (R, k) and mg(P) = —dNv(S, k) then Ps is a pure product:

PS — Q ® H (6;:)7dN(”(SI’k)7V(S’k))
S'€8,(S,R)

Here s € Vo NV is a non-zero vector and Q is an element of Ayn (S, k).

Proof: If mg(P) = —dNv(S, k) then it follows from theorem 4.9 and lemma
4.13 that for any S’ € S,(S, R) the following inequality holds:

mS’(PS) > 7dN(V(SI7 k) - V(S= k))

Hence Ps is divisible by (3%, ) 4N ((5%8)=v(SK) _ This implies that Ps is divisible
by a product of linear factors of total degree at least —dN (v(R, k) — v(S, k)).
But this is exactly the homogeneous degree of Pg. This shows that it equals
a @ times this product of linear functions for some Q € P~*N*(S*)[V]. That
this coefficient @ is in fact in Agn (S, k) follows from the decomposition

V=Vea(VSinvs)aVvs

for any S’ € R,(0,S). O

Note that the proof of theorem 4.10 even shows that the equality mg(P) =
—dNv(S, k) implies the equality mg/ (P) = —dNv(S', k) for all S' € S,(S, R)
and hence for all S’ € R, (S, R).

The next lemma shows an interrelation between exponents of irreducible para-
bolic root subsystems.
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Lemma 4.14 Suppose v(R, k) is of hyperbolic type, i.e. 1 —my < v(R, k) < 0.
Let S € R,(0, R) such that v(S, k) is also of hyprbolic type. Let S’ € R(S, R).
If 8" is irreducible then v(S', k) is of hyperbolic type. If S' is reducible and S"
is an irreducible component of S' not containing S then v(S", k) > 0 i.e. it is
of elliptic type.

Proof: Because both are parabolic we may assume that S and S’ are generated
by simple roots of R. Say by simple roots a; for j € I or j € I' respectively.

Assume that S’ is irreducible. Then the hyperbolic Hermitian form H (k) as
defined in section 3.2 restricts to a hyperbolic form on the C-span of e;, j € I.
Hence its restriction to the bigger C-span of e;, j € I' must also be hyperbolic.
This implies that v(S’, k) is of hyperbolic type.

If S’ is reducible and S” is an irreducible component of S’ different from S then
S" is generated by simple roots a;, j € I". Moreover a; L «; if i € I and
j € I". By definition of H (k) the space Spanc{e; | i € I} is perpendicular to
Spanc{e; | j € I"} with respect to H(k). Because H (k) is hyperbolic on the
former span it must by positive definite (elliptic) on the latter. This implies
that v(S",k) > 0. O

Theorem 4.10 allows the following important construction of algebra homomor-
phisms from An (S, k) to Ax(S’, k) for S’ C S.

Definition 4.5 Let S' C S C R be irreducible and parabolic root subsystems
such that v(S', k) < 0. Define a homomorphism ¢s s : An(S, k) = An(S', k)
of graded algebras as follows. Fiz a polynomial on VS Nvs given by

II:= H (Bg‘”)fN(u(S k)—v(S',k))
S1eS.(S,S)

as in theorem 4.10 for d = 1. If P € Aqn(S, k) then ¢g s(P) is defined as the

projection of P on
P*dNV(SIJc) [VSI] ® P*dN(V(S&k)*V(Sﬂk)) [VSI N VS]

divided by TI7.

Call two homomorphisms ¢1, ¢o between graded C-algebras Ay, Ay equivalent if
there exists a non zero complex number ¢ such that for any homogeneous z € A,

d)l (2) — tdeg(z)d)z(z).
Note that the construction of ¢gs/ s is unique upto equivalence of homomor-

phisms. These homomorphisms relate nicely to each other according to the
following lemma.
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Lemma 4.15 For any sequence S C S’ C S the homomorphisms

¢S”7S’O¢S’7S and QSSH’S

are equivalent.

Proof: Take P € Ayn(S,k). If mgn(P) > —dNv(S", k) then both homo-
morphisms are zero at P. So suppose mg»(P) = —dNv(S",k) and hence
mg (P) = —dNv(S’, k). Using these two equalities and applying theorem 4.10
twice shows that P has a non zero component

Q ®HI ®HII c Pa[VSH] ®Pb[VS” ﬂVS'] ®PC[VS’]

a=—dNv(S",k), b=—dN(v(S" k) —v(S" k)),
c=—dN(v(S, k) —v(S',k)).

Here II' and ITI" are products of linear factors and @ € A n(S", k) divides P.
In particular both homomorphisms map P to a non zero scalar multiple of Q.
O

Remark 4.6 One can even prove that the ¢s s can be constructed in such a
way that the homomorphisms ¢si siods s and ¢psi s are equivalent by a “twist”
of £1.

Now we construct a variety that is the affine cone of a completion of the projec-
tive set P(V"9) depending on the multiplicity parameter k. The variety Q**
appearing in [DM] is the SL(2, C)-quotient of (P*)"*2 with respect to the line
bundle £, i.e. Proj(A(L£)). To get a completion of P(V"%) in general it is
reasonable to consider

Proj(An (R, k)).

However there remain some problems that complicate the study of this space in
great detail. Here are some important ones.

1. For what parameters k is Ax (R, k) non-trivial?
2. Is An(R, k) finitely generated?
3. Are the homomorphisms ¢s/ s as introduced before surjective?

4. Does P(V"¢9) embed as an open dense set?

Of course if R is of type A, then these questions can be answered affirmatively.
The case of general systems remains unclear. At the end of this chapter I
present some partial results on the stated questions. To do so we consider only
a subalgebra of An(R, k) in that section. Namely the algebra generated by
products of dual roots.
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Now instead of studying the algebra An (R, k) I consider the subalgebra gener-
ated by one homogeneous component Ay (R, k). This has the advantage that
the corresponding affine variety can be constructed in a straight forward way
resulting in explicit formulas and computations.

Now fix an irreducible root system R of full rank > 3 in E and a rational
multiplicity parameter k such that v(R, k) is of hyperbolic type. For any S €
Ro(B, R) we define

HS = U (R) = VI\U{VY | 8" € Ro(S, R) with v(S', k) < 0}

o o

Note that this coincides with H5(R) of section 4.3 if v(S, k) < 0 so notation
should not be too confusing.

Fix a common denominator N > 0 of k such that Nv(S,k) is even for all S €
Ro(0, R) with v(S,k) < 0. The space Ay(R, k) is clearly a finite dimensional
vector space. If A (R,k) is its dual we denote the canonical map of Vg into
A’ (R, k) (evaluation) by tg. Then g is homogeneous of degree —Nv(R, k) in
particular tg(—v) = tg(v) for all v € Vg.

Like I'° in section 4.3, page 87 we define
I :={(v,y) € Vg x AN(R,k) | tr(v) = Ay for some X € C*}.
Let I be the closure of I}, and define Ig(Y") for a subset Y C Vg by
Ir(Y):={y € ANy(R,k) | (v,y) € Ig for some v € Y}.

The homogeneous affine variety Q(R, k) is by definition I5({0}), i.e. the closure
of LR(VR).
Note that if v(R, k) = 0 then Q(R, k) = C and 1 is a constant non zero map.

To relate the varieties Q(R, k) and Cone(R', R) we need the following theorem.

Theorem 4.11 Let S € R,(0, R). Define a sequence of N(S,R) polynomials
on VS as follows:

Fs == ][ B%.. S'€8.(S,R)
SII#SI

The product is taken over every S" € S,(S, R) and Bs» is a fized non zero vector
in Veun NV for all S" € S,(S, R).

If P is a polynomial on V° such that:

1. P is homogeneous of degree m(N (S, R) — 1) for some m > 1.

2. For all 8" € R,(S, R) the vanishing multiplicity of P along v satisfies

mg (P) > m(N(S,8") — 1).
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Then there exists a polynomial Q in the indeterminates Xs:, S’ € S,(S, R) such
that @) is homogeneous of degree m and

P =Q((Fs')ses,(s,Rr))

Proof: The proof is given by using a partial fraction decomposition theorem.
It will appear in a separate article. O

This theorem has the following important consequence.

Theorem 4.12 Suppose S € R,(0, R) and v(S, k) < 0. Let v (= ys,r) denote
the map of H3 into Cone(S,R) as in section 4.3. Let for each S' € S,(S, R)
the corresponding coordinate of v be given by 1/5%,. The map

®s: Vs x 7(HD) = Q(R, k)

given by

o5y | I we" T s W)

S'€8,(S,R)

is the restriction of a polynomial map on Vs x CNSB) I particular it extends
to a morphism ®s of Vs x Cone(S, R) into Q(R,k). Moreover there exists a
non zero constant c*t such that ®s(v,0) = c**15(v)ods r for all v € V.

Proof: Let P € Ay(R, k) and let d := —Nv(S, k) +m for some m > 0. Denote
the projection of P onto P%[Vg] @ P~ Nv(EK=d[yS] by P;. Then P, is divisible

by the product
M, = H (6;:)71\[”(5 Jc)fd.
S'eS,(S,R)

Consider the P%[Vs]-valued polynomial P;/II; on V. It is homogeneous of
degree m(N(S,R) — 1) and satisfies mg: (P;/I4) > m(N(S,S') — 1) for any
S" € R,(S, R). Now by putting the definitions together one checks

— _ v S/7 _ 5,7
Uty ') = [ ws¥UE 0,
S'€8,(S,R)

Using theorem 4.11 we conclude that

I o5 By 441 (y))
S'e€S.(S,R)

is polynomial in 4 and y and homogeneous of degree m in y. This shows that
® ¢ extends to a morphism on Vg x Cone(S, R). For y = 0 we get ®g(v,0)(P) =
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(Py/1p)(v) and this is exactly 1s(v)ogs g(P) for all P upto some scalar multiple.
O

If SeR,(0,R) and v(S, k) = 0 then ®5 has the invariance property
¢S(Au: Ai]y) = ¢5’(“7 y)

for all A € C*. Moreover ®5(u,y) is a fixed point if either one of u and y vanishes
(i.e. it does not depend on the other parameter). Let 55 be the canonical map of
Vs x CN(S:E) into Vg @ CV(SH) (a Segre embedding from a projective geometric
point of view). Then the map ®¢ := <I>SOJ§] is a well defined morphism of
15(Vs x Cone(S, R)) into Q(R, k).

At this point we will make some assumptions to assure that the varieties Q (R, k)
have some nice properties. Partial justification of these assumptions is given at
the end of this section.

We make the following assumptions.

1. For all S € R,(0,R) with v(S,k) < 0: The map ts is an immersion
of H2(S) onto an open dense set in Q(S,k). Moreover 1s(v1) = ts(v2)

for some vy,vy € Vg if and only if vi = wvy for some w € C satisfying
wNV(S,k) =1.

2. If S € Ro(0,R) with v(S,k) <0 and S" € R,(S, R) then ¢s.s is surjec-

tive.

3. For any S € Ro(B,R) such that v(S,k) < 0: If v € HY(S) then ®g is
locally biholomorpic at (v,0) € Vg x Cone(S, R), i.e. is the restriction of
a locally biholomorphic map.

4. For any S € R,(0, R) with v(S, k) =0: The map
C* x ys5(Vs x Cone(S, R)) 3 (z,1) = 205(t) € Q(R, k)
is locally biholomorphic at (1,0).

If S C S C R arein R,(0, R) the homomorphism ¢g g induces an injective
linear map ¢ p of AN (S,k) into A (R, k) and @5 podl s equals ¢F pupto
some scalar multiple. There is a nice relation between Q(S, k) and Q(R, k)
using the map ¢ p.

Theorem 4.13 Let S € R,(0, R) such that S # R and v(S,k) < 0. The map
¢ r maps Q(S, k) into Ir(H?) C Q(R, k).

Proof: Letu; € Vg and us € Hf. Take p € C*. Then (pui +ua, Ps(ur, uy(us))
is an element of I where ®g and v are as in theorem 4.12. In particular
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(ua, ®5(u1,0)) € Ig which shows that ®g(u1,0) = ¢*¢§ pors(u1) is contained
in Ir({u2}). Because the latter set is closed ¢ p maps Q(S, k) into Ig({ua}).
O

Note that if v(S, k) = 0 then ¢§ r maps Q(S, k) onto a line (a one dimensional
linear space). Indeed Q(S, k) = C in this case. We call such lines the cuspidal
lines on Q(R, k) and any point on such a line a cuspidal point.

S
o

The following theorem proves that in fact Ig(H
Q(S. k).

Theorem 4.14 The ¢§ p-images of Is(H2(S)) constitute a stratification of
Q(R,k)\{0} if S ranges over all elements of R,(0, R) with v(S,k) < 0.

) is exactly the ¢% p-image of

Proof: Let 7 : Y — Vg\{0} be a smooth blow up such that:

1. The restriction of 7 to 7~ '(#?) is an injective immersion.

2. For S € R, (0, R) with v(S,k) < 0 the closure of the preimage 7' (H?)

o
in Y is a divisor of codimension one.

3. These divisors have normal crossings.

Take n = rk(R). Let z € Y be a point and z1,...,z, polydisc coordinates on
a neighborhood U of z such that the exceptional divisors on Y passing through
U have local equations z; = 0, j = 1,...,s for some s < n. Let W(R;) be
the stabilizer of the m-image of the divisor xz; = 0 for some root subsystem R;.
Define numbers m; as the multiplicity —Nv(R;, k) for j < s.

Then the map on U\{u € U | z;(u) = 0 for some j < s} given by

—my —Mms

T, RN - LROT

extends holomorphically over all points u € U with z;(u) = 0 for at most one
j < s. Indeed by the argument from the proof of the previous theorem it maps
the set

{ueU|z;j(u)=0and z;(u) #0 for all i <s, i #j}
into d)}‘%hR(Q(Rj, k)). Now by Hartog’s theorem the map extends over all of
U and the divisor z; = 0 necessarily gets mapped into ¢%. r(Q(R;,k)). The
theorem follows by induction on the rank of R. O ’

With this stratification of Q(R, k) in mind, assumptions 3 and 4 about the
nature of Q(R, k) above give its local structure near non-cuspidal and cuspidal
points respectively.

The reflection group W (R) acts naturally on Ay (R, k). The map 1g is W(R)-
equivariant and hence Iy is invariant under the diagonal W (R)-action. In par-
ticular the W (R)-action restricts to an action on Q(R,k). The map ¢% p is
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W (S)-equivariant if we consider W(S) as a subgroup of W(R) in the natural
way.

If S € R,(B, R) has rank rk(R)—1 and (S, k) < 0 then Ig(H?3) has codimension
one in Q(R, k).

Lemma 4.16 For S as above the element w € W(R) acts as an involution on
Q(R, k) that fires Ir(H5) pointwise if and only if +w is a reflection fiving S.

Proof: By invariance of Ig and theorem 4.13 such an element w must act as
a scalar w on Vg for some w satisfying wV*(5:%¥) = 1. Then w maps S onto S
and so w = 1. Now w acts non trivial on Q(R, k) and hence ww has to be a
reflection of V' (S has corank one in R). O

Any reflection in W (R) acts as a certain involution on Q(R, k) fixing a subvariety
of codimension one. On V any subgroup W(S) for S C R a strict parabolic root
subsystem has a nonzero simultaneous fixed point. On Q(R, k) the situation is
different.

Lemma 4.17 Let S € R,(0, R). The subgroup W(S) of W(R) has a simulta-
neous fized point on tr(H?) if and only if v(S, k) > 0.

Proof: The map 1p is W(R)-equivariant and its fibres are C_ (g x)-orbits
(cyclic group of roots of unity acting by scalar multiplication). Hence fixed
points of a reflection s, € W(S) on tr(H?) are exactly the tz-images of its
eigenspaces in Vg (recall that Nv(S, k) was supposed to be even). The inter-
section of eigenspaces of all reflections in W (S) is exactly V5. We conclude the
proof by the observation that V* intersects 7—[9 if and only if v(S, k) > 0. O

Corollary 4.4 Let S be as in the previous lemma and let S' € R,(0, R) such
that v(S', k) < 0. The group W (S) has a simultaneous fized point on the relative
interior

% rovs (HO(S"))
of Q(S', k) embedded in Q(R, k) if and only if v(S, k) > 0 and S’ is W (S)-stable.

Proof: The set ¢%, pors: (H2(S")) intersects no Ir(HS") for any S” C S'. By
W (R)-invariance of Iy it follows that H5" and hence S’ must be W (S)-stable.
If S 1 S then v(S,k) > 0 by lemma 4.14 on page 100 and W (S) even fixes
Ir(HS') pointwise. If S C S’ we can apply the previous lemma on Q(S’, k) by
W (S)-equivariance of ¢%, p. O

The importance of these observations is that if z € Q(R,k)\{0} is any non
cuspidal point then x can be W (S)-stable for some S € R, (0, R) only if v(S, k) >
0, i.e. is of elliptic type. This plays an important role in proving the main
theorem on discreteness of monodromy in this case.
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4.5 Hypergeometric functions

After studying the variety Q (R, k) the hypergeometric function returns into play.
In this section we finally want to prove discreteness of the monodromy group of
the system Eg(k) under some natural integrality conditions on its exponents.

The hypergeometric system for a root system of type D, is actually the same
as that of type B, if we define k, = 0 for the 2n “short” roots. Because of this
and the fact that D,, plays an exceptional role in some sense (see remark 4.2 on
page 86 for example) we do not consider root systems of type D,, in this section
altogether.

The map (g is assumed to be an immersion on ’Hg. In particular it is an
immersion on V"¢, Consider the hypergeometric system &£, (k) of germs at the
point v € V"9, Let y := 1g(v) and denote the pushforward of £,(k) by (g as
£ (k). Naturally any germ in £ (k) can be continued analytically throughout
tr(V79). The system has the following properties.

Lemma 4.18 1. The determination order of Ef(k) is Tk(R) and any deter-
mination is homogeneous of degree 1/N.

2. For any w € W(R) there is a canonical isomorphism ofEf(k) onto Efgy(k)
as vector spaces.

3. For any root a € R the system Ef(k) has exponents 0 and 1 — 2k, along
tr(at N V79 with multiplicities n — 1 and 1 respectively.

4. Let S € R,(0, R) be of rank rk(R) — 1 such that v(S,k) < 0. Then the
exponents of Ef(k) along Ig(H5) are 0 and —v(S, k) with multiplicities
rk(R) — 1 and 1 respectively.

Proof: The fibres of tg on V"¢ are orbits of a cyclic group. Because the system
&y (k) is homogeneous of degree v(R, k) it is invariant under this cyclic group.
Hence the push forward £ (k) has the same determination order (rk(R)). The
homogeneous degree of Ef(k) is the quotient of the homogeneous degrees of
&, (k) and the map tg. This proves 1.

Properties 2 and 3 are clear. Let S be as in property 4. Recall that in this
case Ir(H5) has codimension one in Q(R, k) and is isomorphic to Q(S, k). Let
u; € Vs and uy € ’Hf. The curve

o Bg(ur, py(us))

is a smooth curve for y € C near 0 and passes through Ig(H5). By definition
of &g it is also given by

e Chip(p RO (pun + us))
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where ¢* is some constant. Recall that the system &, (k) is homogeneous of

degree v(R, k) and has local exponents v(S, k) and 0 along V' with multiplicities
rk(R) — 1 and 1 respectively. If 3 is one of these exponents then the formula
above shows that § — v(S, k) is a local exponent of Ef(k) along Tr(H5). O

Let A be the algebra of W(R) invariant elements in the coordinate ring of
the affine variety Q(R, k). Take Q(R,k)/W(R) := Spec(A) and think of this
as a weighted homogeneous affine variety. Let A* be the ideal of A of all
elements with zero constant term. We will call AT the origin of the variety
Q(R,k)/W(R). There is a canonical projection of Q(R, k) onto Q(R, k)/W (R).
For U C V denote the quotient Ix(U)/W(R) by I¥ (U). If S € R,(0, R) and
v(S, k) = 0 we call I}V (M) also a cuspidal line.

The map g is not injective on V" and hence W (R) will not even act freely on
tr(V7¢9) in general. However we assumed that the rank of R is at least three.
A consequence of this is that if w € W(R) has a fixed point on tg(V"%9) then
the fixed point set of w has codimension at least two in tz(V"%Y) (recall that
we excluded the case D,, (n odd) which would be a counter example to this
observation). We denote the maximal subset of tz(V"%) on which W(R) acts
freely by Qf (R, k). In particular tx(V" N E) C Qf (R, k).

Let Y denote the W (R)-orbit of y on Q(R,k). The system E;Q(k) descends
naturally to a system Eg(k) on Q7 (R, k)/W(R). Denote the dual of Eg(k) as a
vector space by Eg(k)*. Analytic continuation of (compound) germs in Ee(k)
induces a (left) representation

p* i (QF (R, k) /W (R),Y) = End(£7 (k)").

Note that m1(Qf (R, k)/W (R),Y) is isomorphic to m (C*\A, P(v)) and hence
to B(M). The p*-invariant Hermitian form H* on Eg(k)* is non degenerate
and has signature (1,n — 1).

There is a natural multivalued evaluation map ev of Q¥ (R, k) /W (R) into Eg(k)*
whose monodromy is given by p*. Recall that ev maps even into B, the set of
all vectors v such that H*(v,v) > 0. Let B be the (n — 1)-dimensional complex
ball. Then Cx B is the universal covering of B. If X is the universal covering of
Q7 (R, k)/W(R) then ev induces a (single valued) map EV on X mapping into
C x B as in section 3.7. Let j : Aut(X | X) = G be a homomorphism onto a
group of transformations of C x B such that

EV(g7) = pg)EV(z)

for all z € X and g € Aut(X | X) (compare with figure 3.4, page 72).

We can now formulate the main theorem of this section. For a € R define
Do i=2/(1—2k,). Let S € R,(0, R) be of rank rk(R) — 1 such that v(S, k) < 0.
Define ps as —2/v(S,k) or —1/v(S,k) depending on whether or not W(R)
contains an element w stabilizing S such that w or —w is a reflection of Vp.
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Theorem 4.15 Assume that the four conditions on page 104 hold. Suppose
that for all o € R the number p, € N>o and for all S of rank rk(R) — 1 with
negative exponent the number ps € N>1. Let X,(p) be the universal Galois
covering of Qf (R, k)/W (R) with local degrees p, and ps along I} (ot N'V7e9)
and I} (HY) respectively. Then EV induces an embedding of X, (p) into Cx B.
Moreover Cx B is a ramified covering of Q(R, k) /W (R) minus the origin and all
cuspidal lines extending X, (p) and with automorphism group G. In particular
the image of p* acts discretely on B.

Proof: A specialization of the argument from section 3.7. Considering the local
exponents of the system Sg(k) shows that EV descends to a locally biholomor-
phic map ev, on X,(p).

Now use the local structure of Q(R, k) to extend X, (p) as follows. Let S €
Ro(0, R) be such that v(S,k) < 0. Take z in the relative interior 15(H%(S))
of Q(S, k) embedded in Q(R, k) by ¢% z. By our assumptions on Q(R, k) and
the properties of the morphism ®g introduced before z has a neighborhood U
isomorphic to

ATK(S) (AN 1 Cone(S, R)).

We may assume that U is such that for any w € W(R) if wU NU #  then w
fixes . We may also assume that U N Q7 (R, k) is the product of its projections
on each of the factors of U (in the cartesian product for U shown above).

An enumeration of all possible multiplicity parameters k under consideration
shows that the pair (S, R) will never be any of those listed in theorem 4.5,
page 90. Hence theorem 4.7, page 94 will be applicable to Cone(S,R). See
the tables in chapter 5.

Let S’ C S be the set of roots such that s,z = = for all @ € S’. Then S’ is a
parabolic root system and each irreducible component has a positive exponent,
i.e. is elliptic.

Let the subgroup ¥, of W(R) be the direct product of W(S’) and W (S, R).
Here W (S, R) is as introduced in section 4.3. It is a normal subgroup of the
stabilizer of z in W(R).

Both W(S') and W (S, R) act on a separate factor in the cartesian product of U.
Indeed if w € W (S, R) such that w(v) = —v for all v € Vg and P € An(R, k)
then

P(w(vs +v%)) = P(—vs + w(v®)) = P(vg — w(v®))

for all vg € Vs and v® € V5. This is the reason for introducing the W (S, R)-
action as we did in definition 4.2, page 86.

Replace U by the smaller symmetric neighborhood

U :=Nyex, wU.
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The space (UNIR(V"9))/%, is also a cartesian product, namely of the comple-
ment of a discriminant and the regular part of Cone(S, R)/W (S, R) intersected
with a neighborhood of its origin. Hence the universal Galois covering U (p) of
this quotient space with local degrees p, and pg along codimension one divisors
on Q(R, k) has finite degree and embeds in a smooth ramified covering of U/Z,
by the results of sections 3.5 and 4.3.

Replace U again by the smaller neighborhood

U .= mwestabw(m (w)wU.

Then the Galois covering U(p) is also the universal Galois covering with the
same local degrees of

(UNTr(V"™))/Stabw g ().
Indeed the map of U/, onto U/Staby (g)(x) is a ramified covering with local

degrees one along the codimension one divisors.

Again it can be shown (using the fact that EV induces a locally biholomorphic
map on the extension of U(p) as in theorem 3.14, page 58 in section 3.5) that
U(p) embeds in X,(p) and hence this covering extends to a ramified covering
X! (p) of Q(R,k)/W(R) minus the cuspidal lines and the origin. A similar

T
argument as in section 3.7 shows that the map ev, extends to a biholomorhic

map of X(p) onto C x B.
This proves the theorem. O

4.6 Some computational results

Let k be a rational multiplicity parameter and N > 0 a common denominator of
k. In this section we study a certain subalgebra of An (R, k). Let m : R — N be
some multiplicity parameter (not necessarily W (R)-invariant). The following

“monomial”
H (a* ) Mme

a>0

is an element of Ay (R, k) if and only if it satisfies:

1. > 0soMa = —dNv(R, k) for some d € N.

2. Y hesnrt Ma > —dNv(S,k) for all S € R,(0,R) and d € N satisfying
property 1.

All such monomials together generate a graded subalgebra Ay, (R, k) of An (R, k).

Theorem 4.16 If R is of type A,, then AN (R, k) and An(R, k) are the same.
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Proof: This is a consequence of the main theorem in invariant theory for
SL(2,C): The algebra of invariant sections in £ is generated by products of
determinants det(y; y;), i # j, y€ Mat(2 x (n +2),C). Under the isomorphism
(va) : A(L) = An(A,,m/N) these determinants coincide with dual roots a*.
O

Because A%, (R, k) can be identified with the C-algebra generated by a rational
cone in NE" it follows that AN (R, k) is finitely generated.

Theorem 4.17 The algebra AW (R, k) is non trivial exactly in the following
cases:

Proof: Suppose the monomial with multiplicity parameter m # 0 is an element
of An(R, k). Summing up all multiplicity inequalties for parabolic irreducible
root subsystems of corank one in R yields lower bounds for v(R, k) as reproduced
in the table. Of course 0 is an upper bound for v(R, k).

Take for example R = Hjz. There are six root subsystems of type I»(5) and
every root is contained in exactly two of those. This gives

—2dNv(Hs, k) =2 ma =

a>0

> > ma | > —6dNv(Iy(5),k) = —3dN (v(Hs, k) + 1)
s of type I,(5) \aesSnH

and thus a lower bound for v(Hs, k) of —3.

In every case satisfying the bounds listed above one can explicitly construct
a non constant monomial in Ay (R, k). For example if m is any multiple of
—Nv(Hjs, k) then the monomial

H (a*)m

rxGHS+
is an element of A%, (Hs, k). This proves the theorem. O

It is easy to check that the homomorphisms ¢s g map A% (R, k) into A% (S, k)
and hence restrict to homomorphisms ¢ p.
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Theorem 4.18 If R is of type A, or B,, and v(R, k) lies in the hyperbolic range
then all ¢ p are surjective. In any of the cases (Fy,p,q) withp =2, ¢ <12
orp=3and q € {3,4,6,12} or p = 4 and q = 4 the homomorphisms ?s r
are surjective. In the latter cases we take the multiplicity parameter k such that
kr={1/2-1/p,1/2-1/q}.

Proof: In fact in all these cases a monomial in A% (S, k) has a monomial
preimage in A% (R, k). It suffices to consider S of corank one in R.

Suppose R is of type A, and S is of type A,_1. Let m # 0 be a multiplicity
parameter on S such that the corresponding monomial is an element of Ay (R, k)
say. If m' is a multiplicity parameter on A,, such that its restriction to S is m
then it is not hard to check that the monomial corresponding to m' is an element
of An(R, k) if and only if for every 8 € A,\S

Z my | + Nv(An_2, k)
alf

!
M

IN

and of course ., ma = —Nv(A,, k). Note that roots perpendicular to 3
form a system of type A,,_o contained in S. All these inequalities can indeed
be fulfilled exactly if —1 < v(A4,,,k) < 0.

The case R = B,, can be treated with a similar argument involving root sub-
systems of corank one and two.

The listed cases for Fy were checked on a computer. This was done by only
considering the extremal multiplicity parameters on corank one susbsystems.
The computation then amounts to a feasibility test of a set of linear inequalities.
O

If in any of the cases in theorem 4.18 v(R, k) is strictly greater than the lower
bounds listed in the table above then there exists a multiplicity parameter m
such that all inqualities on m corresponding to root subsystems are strict in-
equalities. This implies in particular that A% (R, k) has sufficiently many ele-
ments to ensure that tg is an immersion on V"¢ with cyclic orbits as fibres.

We conclude this chapter with a final remark.

Remark 4.7 Suppose R and k are such that v(S,k) > 0 for every parabolic
irreducible root subsystem S of corank at least two in R. Then instead of con-
sidering Q(R, k) it suffices for the purpose of proving the main theorem to blow
up Vg in all one dimensional linear subspaces with a hyperbolic stabilizer.

In particular this suffices to handle all cases where R has rank three. Also
(Hy,3) and (Fy,p,q) with p = 2 and ¢ = 4,5 or p = 3 and q¢ = 4 are other
examples. See the tables in the next chapter.

It is an interesting question if in general the variety Q(R, k) (or one with similar
properties) can be obtained by succesive blow ups and blow downs of V.
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Chapter 5

Tables

5.1 The marked Coxeter diagrams

This chapter contains the tables of marked Coxeter diagrams of elliptic, para-
bolic and hyperbolic type for which the associated complex reflection group is
discrete in the suitable unitary group. For some hyperbolic diagrams discrete-
ness is still conjectural (see the remark in section 5.4). The tables list all cases
of rank at least two and with a mark that is at least three.

In the elliptic case the associated reflection group is finite. In the parabolic case
it acts cocompactly on affine space. For hyperbolic diagrams the associated
reflection group acts discretely on the complex hyperbolic ball. In the hyperbolic
case the action is cocompact for all diagrams that do not contain parabolic
subdiagrams. In all other cases it acts with cofinite volume.

5.2 The elliptic diagrams

m
5 g oO—0 - - 00—
P P P
m 56 8110 — =T
p 3|2 2|2 13,4533
73134533
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p p p q

tk || >2]2 3

p |2 3 3

¢ [>3[3,45]2
Type (B, p,q)

5.3 The parabolic diagrams

m
P q oO—0o - - O—=0
P P P P

m |6 |8)12 k[ 2]3]5
p 213 2]2 PREARAE

61343
d Type (A, p)
Type (I2(m),p, q)

O O - - O ! > 3 3 3
D D D q

rk || 2 3 4 i

p 314343 3

g ||[6]4]3]2]2 Type (D4, 3)

Type (Byy:p,q)

w0
wC

)
)

Type (F47 37 2)

5.4 The hyperbolic diagrams

Diagrams that contain a hyperbolic proper subdiagram are the result of the
theory in chapter 4.
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m oO—O - - O—0
o———O0 p D p
p q
rk || 2 3
Lyloqo2 » 1[>715.6,7.8,9,10,12,18
m > 5 and p = ¢ if m is odd. rk | 4 5 6171819
> 4568 45(3(33]3
Type (I2(m),
ype (I2(m), p, q) Type (A, p)
o—-:0 - O0——O0
p p p q
rk || 3
p |3 4
g 14,5.6,7.8,0.10,12,15,18,24,42 | 3,4,5,6,8,12,20
RIE 6 7 8
7 112.3.4,5,10,20 | 2,3,4,6,12 9.3,42 | 2,3,4,8,24
AIE 10 12 13
g 12318023515 3.3.4,6,12  [2.3,9
rk || 4
o3 1 5 8
¢ 13,4612 2.3.4.6 2236 2.4
rk || 5 6 7 8
B 13 1 3 13
2.3,4,6 2,412,362 2,32
Type (Byk:p,q)
p p p p p
O O O O O 3 3 3 3 3 3
l O O O O O O
; !
3
DIEE | Type (E7,3)
Type (Es,p) ' ’
3 3 3 3 3 3 3
3
Type (ES,?))




o—ot o o
P P q q
pll 2 3 416
g 114,5,6,8123,4,6,12 4|6
Type (Fy,p,q)
o0— 090 o0— 00— 095
D D P D D P P
P [5t500 | DEE
Type (Hs,p) Type (Hy,p)
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Index of notations

V, A, 84

(a,b)™, 41
Area(y), 18
AN (R, k), 110
Aut(X |Y), 6
A(k), 56

Ay(k), 62
Ay, 65

B, 71

Bs, 87

B, 71
B(M), 42
B(M, p), 44

C.(k), 91

catt, 92
Come(k), 93
ceome (k), 93
Cone(R', R), 87
C(M,p), 65

A, 5, 42

5(-,-), 76

Awo, 72

D, 7, 42

d(-,), 28, 59, 63
Dry, 24

(E7 ('7 ))7 40
£, 51

Es, b4
Eu(k), 53
EQ(k), 108

EQ(k), 107
ev, 11, 24, 55
ej(k), 54
e;(k3 ), 10
ej(z), 16

Fs, 53
Fs, 55
Fu, 53
dg, 103
®%, 104
61,5, 100
G50 104
©(z1y...,2n), 15
Fp, 17

gs, 88

I, T(Y), 87
re, 87
FW(U), 93
I'g, 88

ry, r¥, 93
Iy, 90
ZRI’R’ 87
G, 72
G(M,p), 45

H(R), 85
HS(R), 85, 102
H, 45

H(--), 19

H*, 48

H*, 63

i 5], 24



Lr, 102
19, Ig(Y), 102
1Y(U), 108

K', 44

¢, 54
A, 66
L(k), 52

(M, p), 43
mS(P)7 96
M(z), 18

V(k), 49
v(k), 48, 51
v(R, k), 91
N(R',R), 83

Pol(u), 18
pev, 24
m(X,xz), 6
T, 08
P[V], 95
Ps, 96

Py (w), 19

3

Q, 23
Q(R, k), 102
Q' (R, k), 108

(R, 84

R(R',R), Ro(R',R), 83

Rev, 57
p, 53
p*, 5o
o(k), 49
0, 45
0*, 48
R, 40

S(R',R), S,(R', R), 83
Spec(A), 93, 108

S(z;t), 16

Op, O, 68

Vol(M(z2)), 18



Index

C*-action, 43

area (of loops), 18

Bessel functions, 52
birational map, 87

blow up, 74, 105, 112
braid group, 8, 42

braid group, truncated, 44
Brieskorn’s theorem, 43

Chevalley’s theorem, 42
covering automorphism, 6
covering map, 6

Coxeter arrangement, 83
Coxeter diagram, 41
Coxeter diagram, marked, 43
Coxeter element, 41, 46
Coxeter integers, 41
Coxeter matrix, 41
Coxeter number, 41
Cremona cone, 82, 87
crystallographic group, 66
cuspidal line, 105, 108
cuspidal point, 105

degree (of covering), 6
degree (of theta function), 68
discriminant, 7

domain, 4

Dunkl connection, 49

Euler vector field, 51

evaluation map, 11, 24, 55, 94, 108
evaluation map, restricted, 57
exponent (of diagram), 48

exponent (of differential equations),
53

exponent (of root system with mul-
tiplicity parameter), 91

exponents (of function), 26

facet, 43
flat section, 50
fundamental group, 6

geometric quotient, 14, 23
geometric realisation, 45
GIT, 23, 82, 95

Hartog’s theorem, 5, 29, 59
Hermitian form, 59, 71
Hermitian structure, 19
hyperbolic diagram, 70
hyperbolic form, 19, 24, 47, 48
hypergeometric function, 14, 107

invariant factors, 67
isomorphism theorem, 5

Laplace operator, 52
local degree (of covering), 6

maximum principle, 4, 80

monodromy representation, 10, 24,
52, 93, 108

monomial, 110

Nilsson class, 9, 23, 91
open mapping theorem, 4

parabolic diagram, 61



parabolic form, 47, 63
Poincaré-Bergman metric, 28, 76
point group, 65

presentation, 61, 64, 77

reflection representation, 44

reflection representation, logarithmic,
48

regular part, 89

Riemann extension theorem, 5

root system, 40

root system, parabolic, 83

Schwarz-Christoffel map, 16
special eigenvalue, 45
subregular, 8, 43

symmetric group, 7
symmetric polynomials, 7

theta function, 65, 67
translation, 65

unit ball, 71
vanishing multiplicity, 95

Wronskian, 11, 25, 55
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Complexe spiegelingsgroepen en
hypergeometrische funkties

In de theorie van eindige reéle spiegelingsgroepen zijn de resultaten betreffende
presentaties en invariantentheorie van dergelijke groepen nadrukkelijk aanwezig.

Voor eindige (eventueel complexe) spiegelingsgroepen in het algemeen is de in-
variantentheorie evenzeer goed begrepen (in deze theorie is het niet van belang
om de ordes van de voortbrengende spiegelingen te kennen). Op het gebied van
presentaties van deze algemenere groepen ligt dat anders. Hier zijn presentaties
beschreven door deze met een computer geval voor geval te testen, hetgeen in
essentie mogelijk is daar de betrokken groepen eindig zijn.

In dit proefschrift wordt van een zekere klasse van complexe spiegelingsgroepen
(waaronder zowel eindige (Shephard-groepen) als niet-eindige groepen vallen)
op een intrinsieke manier resultaten bewezen betreffende presentaties en invari-
anten.

Belangrijkste hulpmiddel bij het opzetten van deze theorie zijn de hyperge-
ometrische funkties geassocieerd met wortelsystemen. In het bijzonder de al-
gebraische en meetkundige kant van het analytisch voortzettingsgedrag wordt
uitgebreid bestudeerd.

Hoofdstuk 1 schetst de gevolgde methoden aan de hand van de symmetrische
groep. Hoofdstuk 2 tracht reeds bekend werk van Deligne en Mostow in meer
elementaire termen uiteen te zetten. Hoofdstuk 3 vormt in wezen de kern van
dit proefschrift en behandelt willekeurige eindige wortelsystemen met daaraan
gerelateerde complexe spiegelingsgroepen. Hoofdstuk 4 tenslotte is een aanzet
om resultaten van hoofdstuk 3 in een algemenere vorm te kunnen begrijpen en
bewijzen. Dit laatste hoofdstuk is voornamelijk meetkundig van aard.
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