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Chapter 1Introdution
1.1 Funtion theoryIn this setion I reollet some theorems from multi-variable funtion theorythat are used in this paper. They are all quite elementary and omitted proofsan be found in [G℄.De�nition 1.1 A subset U � C n is alled a domain if it is open and onneted.Theorem 1.1 (Open mapping theorem) Let U � C n be a domain andF : U ! Ca non-onstant holomorphi funtion, then F is an open mapping.Theorem 1.2 (Maximum priniple) Let (�; �) denote the standard hermi-tian form on Cm , and let U � C n be a domain. If a holomorphi mappingF : U ! Cmis suh that the (real valued) funtionz 7! (F (z); F (z))attains a maximum on U , then F is a onstant mapping.Proof: Suppose that (F (zo); F (zo)) = M is maximal for some zo 2 U . De�nea holomorphi funtion ' on U by:'(z) = (F (z); F (zo))4



Then the Shwarz inequality yieldsj'(z)j2 � (F (z); F (z)) �M �M2Now beause '(zo) =M , the open mapping theorem implies that ' is onstanton U . Again by Shwarz, we onlude that F maps into the irle �1 � F (zo),where �1 is the unit irle in C . By the open mapping theorem it follows thatF has to be a onstant.2De�nition 1.2 De�ne � = fz 2 C j jzj < 1g�� = �nf0gand for k � m:�m;k = f(z1; : : : ; zm) 2 �m j zj 6= 0 for some j � kgTheorem 1.3 (Hartog's theorem) Let m; k be two integers, m � k � 2, andF : �m;k ! Ca holomorphi funtion. Then F extends to a holomorphi funtion on �m.Theorem 1.4 (Riemann extension theorem) Let m � 1 be an integer andF : �m;1 ! Ca holomorphi funtion suh that for any w 2 �m�1 the funtionz 7! F (z; w)extends holomorphially to �. Then F extends holomorphially to �m.Theorem 1.5 (Isomorphism theorem) Let m; k be two integers, m � k �2. If a holomorphi mapping F : �m;k ! Cmis loally biholomorphi, then F extends to a loally biholomorphi mapping on�m.Proof: By Hartog's theorem, F extends holomorphially to �m. The funtionj = det��Fi�zj �is holomorphi on �m and non-vanishing on �m;k. Hene 1=j is holomorphion �m. In partiular, j is non-vanishing throughout �m. This implies that Fis loally biholomorphi. 2 5



De�nition 1.3 If X is a topologial spae and x 2 X we denote its fundamentalgroup with base point x by �1(X; x). If g1 and g2 are the homotopy lasses ofloops 1 and 2 respetively then g1g2 is the homotopy lass of the onatenation1 � 2 obtained by passing along 1 and 2 in this order.De�nition 1.4 Let X and Y be onneted omplex manifolds. A surjetiveholomorphi map � : X ! Y is alled a overing map if every point y 2 Y hasa neighborhood U suh that the restrition of � to any onneted omponent of��1(U) is a biholomorphi map onto U .Let � : X ! Y be a overing map. The set of all biholomorphi mappings gof X onto itself satisfying �Æg = g equiped with the produt (g1; g2) 7! g1Æg2 isalled the automorphism group of the overing and is denoted by Aut(X j Y ).The ardinality of any �bre of � is alled the degree of the overing (this doesnot depend on the hosen �bre).A overing is alled Galois if its automorphism group ats transitively on eah�bre.If X is simply onneted then it is alled a universal overing of Y .Theorem 1.6 Suppose � : X ! Y is a universal overing map and y 2 Y .The groups �1(Y; y) and Aut(X j Y ) are anonially isomorphi.If � : X ! Y is a universal overing and g 2 �(Y; y) we write x 7! gx for theorresponding overing automorphism.De�nition 1.5 Let Y be an analyti variety (see [G℄) and D � Y be a subva-riety suh that Y nD is a omplex manifold (i.e. is smooth). Let � : X ! Y nDbe a Galois overing and take y 2 Y . If U is a onneted neighborhood of y suhthat UnD is onneted then let d(�; U) be the degree of the restrition of � toany onneted omponent of ��1(U). The loal degree of � at y is the minimumof d(�; U) taken over all neighborhoods U as before.De�nition 1.6 Let X and Y be onneted analyti manifolds. A surjetiveholomorphi map � : X ! Y is alled a rami�ed overing if it satis�es thefollowing two onditions.1. Every y 2 Y has a neighborhood U suh that the restrition of � to anyonneted omponent of ��1(U) is a �nite branhed overing of U in thesense of [G℄.2. If x1 and x2 are elements in X suh that �(x1) = �(x2) then there is abiholomorphi mapping g of X onto X suh that �Æg = � and g(x1) = x2.6



The group of all biholomorphi mappings g of X onto X suh that �Æg = � isalled the automorphism group of the overing and is denoted as Aut(X j Y ).Let � : X ! Y be a rami�ed overing. The maximal ardinality of a �bre of �is alled the degree of the overing. If y 2 Y and U is a neighborhood of y thenlet d(�; U) be the degree of � restrited to any onneted omponent of ��1(U).The loal degree of � at y is the minimum of all degrees d(�; U) taken over allneighborhood s U of y.1.2 The symmetri groupSome notions and tehniques used in this thesis will be introdued for the exam-ple of the root system of type An. This has the advantage that the assoiatedreetion group is the symmetri group Sn+1. The struture of this group andits polynomial invariants will be familiar to the reader. Nevertheless, even forthis ase one an prove non-trivial results. Studying the symmetri group leadsto an intrinsi proof of a theorem by Orlik and Solomon [OS℄ on the invariants ofShephard groups related to Sn+1 and a result of Coxeter [C℄ on presentations ofsuh groups. The proofs in [OS℄ and [C℄ are based on a ase by ase veri�ationusing a omputer.Consider the symmetri group Sn+1 for some n � 1. It has a natural represen-tation � on C n+1 . If e1; : : : ; en+1 is the anonial basis of C n+1 and � 2 Sn+1then �(�)ej = e�(j).Let z1; : : : ; zn+1 denote the anonial linear oordinates on C n+1 . It is wellknown that the algebra P [C n+1 ℄Sn+1 of symmetri polynomials on C n+1 is gen-erated by the elementary symmetri polynomials s1; : : : ; sn+1. These are de�nedby n+1Yj=1(X � zj) = Xn+1 � s1Xn + : : :+ (�1)n+1sn+1in partiular s1 = z1 + : : : + zn+1 and sj is homogeneous of degree j. Therestrition of � to the n-dimensional subspae V given by s1 = 0 is irreduible. Inthe rest of this introdution we use this restrition. The square of the polynomialÆ on V given by Æ = Y1�i<j�n+1(zi � zj)is learly symmetri. Hene Æ2 = D(s2; : : : ; sn+1) for some polynomial D 2C [x1 ; : : : ; xn℄ in the indeterminates x1; : : : ; xn. This D is alled the disriminantof Sn+1. Note that Æ vanishes at z 2 V if and only if zi = zj at z for some i 6= j,i.e. if and only if z is �xed by �(i j). The omplement of the vanishing lous of Æis alled V reg, a point in this omplement is alled regular. Note that a point is7



regular preisely if its Sn+1-orbit ontains (n+ 1)! points. The vanishing lousof D on C n is denoted by � or �n�1 to indiate the dimension.The set � has a natural strati�ation as follows. Let (a1; : : : ; am) be a non-dereasing sequene of integers suh that a1 > 1 and jaj := a1+ : : :+am � n+1.Let �(a1;:::;am) denote the stratum of all points (x1; : : : ; xn) 2 � suh that thepolynomial Xn+1 + x1Xn�1 � : : :+ (�1)n+1xnhas exatly m multiple zeroes with multipliities a1; : : : ; am respetively. Forexample �(n+1) = f0g and �(2) is the \subregular" stratum of dimension n�1.If x 2 �(a1;:::;am) then there exists a oordinate neighborhood of x that isisomorphi to a Cartesian produt of m + 1 fators of the following kind: An(n + m � jaj)-dimensional polydis and for eah 1 � j � m the omplementof �aj�2 in an (aj � 1)-dimensional polydis. We will make use of this loalstruture later on in an indutive argument on the dimension n.Using the elementary symmetri polynomials as oordinates we get a mapS : V ! C n ; S : z 7! (s2(z); : : : ; sn+1(z)):To study the omplement C nn� �x a base point u = (u1; : : : ; un+1) 2 V suhthat uj 2 R for all j and u1 < u2 < : : : < un+1. For j = 1; : : : ; n de�ne a pathj onneting u with �(j j+1)u as followsj(t) = u+ 1� e�it2 (�(j j+1)u� u); t 2 [0; 1℄:Theorem 1.7 The fundamental group G := �1(C nn�; u) is generated by thehomotopy lasses gj of the loops SÆj . Moreover it has the following presenta-tion hg1; : : : ; gn j gigj = gjgi; if 1 � i; j � n and ji� jj > 1gjgj+1gj = gj+1gjgj+1; all 1 � j < niProof: See [FN℄. 2The group G is isomorphi to the braid group of n+1 strings as introdued byArtin [A1,A2℄. For any integer p � 2 we denote the smallest normal subgroup ofG ontaining all elements gpj by �(p). The quotient G=�(p) is alled a trunatedbraid group. We an now prove an important geometri property of the map S.Theorem 1.8 The map S is a branhed overing map with branh lous �.The restrition of S to V reg is a Galois overing of C nn� of loal degree twoalong �(2). Moreover it is universal with respet to this property.Proof: That S is a overing map with branh lous � follows from the fat thatwe an reover z from (s2(z); : : : ; sn+1(z)) upto the Sn+1-ation. Moreover Sn+18



ats transitively on the �bres. This also shows that the loal degree along �(2)is two. The universal overing of C nn� has an automorphism group isomorphito G. Now it is well known that Sn+1 �= G=�(2). This shows that the overingS is universal. 2This nie theorem gives rise to the following question. For whih p � 3 is theuniversal Galois overing of C nn� of loal degree p along �(2) a �nite overingand what is the struture of suh a overing?In this introdution we will sketh a proof of the following result.Theorem 1.9 Suppose p � 3 is suh that 1 � (n + 1)(1=2 � 1=p) > 0. Thenthe trunated braid group G=�(p) has a faithful representation �p on an n-dimensional omplex vetor spae E suh that the image G(p) � End(E) is �niteand generated by omplex reetions �p(gj) of order p. Moreover there are homo-geneous h1; : : : ; hn 2 P [E℄ generating P [E℄G(p) suh that (h1; : : : ; hn) : E ! C nis a rami�ed overing with branh lous � and of loal degree p. All possibilitiesare listed in the following table:n 1 2 3 4p � 3 3; 4; 5 3 3Proof: The proof is a ombination of linear algebra and omplex analysis. Theidea is to onstrut a funtion of Nilsson lass [D℄ of determination order n onV reg with some Sn+1-invariane and homogeneity properties. This indues amultivalued map ev : C nn� ! E for some omplex vetor spae E and therepresentation �p by analyti ontinuation. Then it is proved that ev has asingle valued inverse h on E whih is polynomial and �p-invariant, proving thetheorem.The ase n = 1 is trivial. Rami�ed overings of any positive loal degree at0 2 C are given by the maps x 7! xp. Therefore we assume that n is at least 2.Let U � V reg be a simply onneted neighborhood of u that does not intersetany other of its Sn+1-onjugates. Take k 2 [0; 1=2) and z = (z1; : : : ; zn+1) 2 Uwith real oordinates. De�ne a holomorphi di�erential form �(k; z) on theextended upper half planeHz := fs 2 C j Im(s) � 0; s 6= zj ; j = 1; : : : ; n+ 1gby �(k; z) := n+1Yj=1(zj � s)�kdswhere we take ab := exp(b � log a) for a > 0. For eah j = 1; : : : ; n de�ne afuntion fj(k; �) on U byz 7! fj(k; z) := Z zj+1zj �(k; z):9



Note that in ase k = 0 these are just n independent linear funtions on V .Lemma 1.1 The following properties for the fj(k; �) hold:1. Any fj(k; �) extends to a multivalued holomorphi funtion on V reg.2. The funtions f1(k; �); : : : ; fn(k; �) on U are linearly independent over C .3. The C -vetor spae F (k) spanned by the fj(k; �) is invariant under analytiontinuation.4. Eah fj(k; �) is homogeneous of degree 1� (n+ 1)k.5. If � 2 Sn+1 and f [℄ is the analyti ontinuation of f 2 F (k) to �(�)Ualong a path  onneting u and �(�)u then z 7! f [℄(�(�)z) is again anelement of F (k).Proof: All statements exept 2 an be easily veri�ed using the de�nition of thefj(k; �). A proof of 2 is given in the next hapter. 2From these properties we onlude that the map S indues an n-dimensionalvetor spae FS(k) of funtions on S(U), spanned by the funtionsej(k; �) := e��ijkfj(k; �)Æ(SjU )�1:This spae is invariant under analyti ontinuation along loops in C nn�. Theresulting right representationMk : G! End(FS(k))is alled the monodromy representation.De�ne q as exp(�2�ik) and q1=2 = exp(��ik). We omit the proofs of thefollowing two theorems.Theorem 1.10 For 1 � i; j � n, i 6= j we have:1. Mk(gj)ej(k; �) = �qej(k; �).2. Mk(gj)ei(k; �) = ei(k; �) if ji� jj > 1.3. Mk(gj)ei(k; �) = ei(k; �) + q1=2ej(k; �) if ji� jj = 1.In partiular Mk(gj) is a omplex reetion on FS(k).10



Theorem 1.11 With respet to the basis ej(k; �), j = 1; : : : ; n, the followingn� n matrix de�nes an Mk-invariant Hermitian struture on FS(k).Hk := 0BBBBB� 2 os(�k) �1 ;�1 2 os(�k) �1. . . . . . . . .�1 2 os(�k) �1; �1 2 os(�k)
1CCCCCAThe Hermitian form Hk is positive de�nite i� 1� (n+ 1)k > 0.Note that Mk(gj) and Hk an be interpreted as a deformation in k of thegenerating reetions of � and the Hermitian form on V .Denote the dual of FS(k) by Ek. There is a anonial mapev : S(U)! Ek; x 7! evaluation at xalled the evaluation map. It an be ontinued analytially along any path inC nn� so we will think of it as a multivalued funtion on this spae. This mapis weighted homogeneous on C nn�, i.e.ev(�2x1; �3x2; : : : ; �n+1xn) = �1�(n+1)kev(x1; : : : ; xn)for any � 2 C � . Its loal properties are as follows.Theorem 1.12 The evaluation map is everywhere loally biholomorphi. Forany ontinuation of ev near a point p 2 �(2) there are loal oordinates y1; : : : ; ynnear p and linear oordinates on Ek suh that � has loal equation y1 = 0 andthe evaluation map is given byx 7! (y1=2�k1 ; y2; : : : ; yn)for x near p.Proof: An argument involving the expliit integral formulas for ej(k; �) and theso alled Wronskian of the funtion spae FS(k). Details an be found in thenext two hapters. 2Let M�k denote the transpose of Mk on Ek, i.e.(M�k (g)�)(f) = �(Mk(g)f)for all � 2 Ek and f 2 FS(k). Then M�k is a left representation.If � : eX ! C nn� is the universal overing then ev extends to a single valuedholomorphi map fev on eX and satis�esfev(g � x) =M�k (g)fev(x)11



for all overing automorphisms g 2 G. We denote the image of G under M�k byGk.Let p � 3 and k = 1=2�1=p be suh that Hk > 0, i.e. 1�(n+1)k > 0. Then fevis �(p) invariant and desends to a single valued funtion evu on the universalGalois overing �u : Xu(p) := �(p)n eX ! C nn�of loal degree p along �(2). In partiular �(p) is ontained in the kernel ofM�k .Considering the loal struture of C nn� near some point 6= 0 in � one anprove by indution on the rank n that Xu(p) embeds in a rami�ed overing�r : Xr(p) ! C nnf0g with branh lous �nf0g. This means that Xu(p) =��1r (C nn�) and �u = �rjXu(p). Moreover evu extends to a loally biholomorphimap evr on Xr(p).The Hermitian form Hk on FS(k) indues an M�k -invariant metri on Ek. Byan elementary topologial argument and homogeneity of evr one dedues thefollowing. There exists a positive number � > 0 suh that any loal inverse ofevr near a point y 2 Ek extends to a ball entered at y with radius � times thedistane of y to 0. Hene any loal inverse extends to Eknf0g beause this is asimply onneted set if n � 2. This shows that evr is an isomorphism between(Xr(p); G=�(p)) and (Eknf0g; Gk).Now the map h on Eknf0g ! C nnf0g given by h := �rÆev�1r is a map havingholomorphi funtions on Eknf0g as oordinates. Beause 0 is of o-dimensionat least two in Ek, Hartog's theorem implies that h extends holomorphially toEk and learly h(0) = 0. In partiular h : Ek ! C n is a rami�ed overing of�nite degree and its automorphism group Gk is �nite.Note that for any j the jth oordinate hj of h is homogeneous of degreej+11� (n+1)kwhih must therefore be an integer. This implies that 1� (n+ 1)k itself equals1=m for some integer m � 2 and eah hj is a polynomial. Moreover eah hj isGk invariant and in fat they generate the algebra of Gk-invariant polynomialson Ek.Taking �p :=M�k , E := Ek and G(p) := Gk, the theorem is proved. 2The isomorphism G(p) �= G=�(p) gives a presentation of G(p) onsisting of thebraid relations for G and a relation for eah generator to make its order p.The existene of generators h1; : : : ; hn for P [E℄G(p) suh that h is a branhedovering with branh lous � is a speial ase of a result in [OS℄ on disriminantsof Shephard groups. 12
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Chapter 2Lauriella's FD2.1 AbstratIn this hapter we study the moduli spae of (multivalued) di�erential forms onP1 with n+3 singular points with �xed exponents, for some n � 1. Integrationof suh a form gives rise to a period or evaluation mapping losely related tothe hypergeometri funtion FD of Lauriella in n variables. If one imposessome onditions on the exponents at the singularities of the form this evalua-tion mapping establishes an isomorphism between a ertain geometri quotient(P1)n+3=PGL(2; C ) and a quotient B=� of a omplex hyperboli ball where �is indued by monodromy of the evaluation mapping.2.2 IntrodutionThe lassial hypergeometri funtion was already studied by Euler in the 18thentury. More famous are the impressive results Gauss obtained onerningthis funtion, whih is also referred to as Gauss' hypergeometri funtion. Thesubjet of this hapter was initiated in the 19th entury by Riemann [R℄ andShwarz [S℄. Riemann found a partiularly nie way to study properties likemonodromy and transformation formulae for the Gauss funtion. Shwarz thenfound all parameters for whih the Gauss funtion has a �nite monodromygroup, i.e. for whih it is algebrai. His methods were geometri of nature andlater Klein generalized his work to obtain disrete monodromy groups (relatedto the so-alled Klein triangle groups).After this, generalizations have been arried out in two diretions. In 1989 (!)Beukers and Hekman [BH℄ found the parameters for whih the higher hyper-geometri funtion nFn�1 has �nite monodromy. In this diretion, the question14



remains when this higher hypergeometri funtion has disrete monodromy. Aquestion whih is, as far as I know, not yet answered. The seond diretion ofgeneralizations of the lassial work was in several variables. Hypergeometrifuntions of two variables were introdued by Appell [A,AK℄. Piard then usedAppell's funtion F1 (Appell introdued F1 up to F4) to study the same ques-tions about �niteness and disreteness of its monodromy. Though he ouldn'tsettle these questions in detail (in fat some of his arguments were wrong) hedid some important work on this funtion [P1..3℄.Little after Appell, Lauriella [L℄ gave a generalization of the funtions F1:::F4in arbitrarily many variables alled FD ; FA; FB ; FC respetively. In the 19700sTerada [T℄ used the Lauriella FD to ontinue Piard's work. But he also did nothave the omplete proofs, though he did get the right answers. Then some tenyears later the famous paper by Deligne and Mostow was published [DM℄. Theyinvestigated the same questions as Terada and have given a rigorous treatment ofthe subjet. Reently a very nie paper by Thurston [Th℄ was published in whihhe studies a related moduli problem but now using ombinatorial tehniques andtheory of oni manifolds. The word hypergeometri funtion does not appearin his paper.The intention of this hapter is to ombine some ideas found in [DM℄ and [Th℄to get a fairly elementary treatment of the subjet. I would like to thankG. Hekman, for many fruitful disussions, E. Looijenga for introduing me tothe subjet of Geometri Invariant Theory and H. de Vries for areful readingof the manusript.2.3 The hypergeometri funtion FDLet n 2 N be at least 1. In this setion we �x parameters �0; : : : ; �n+2 2 (0; 1)suh that P�j = 2. Take real numbers zo1 ; : : : ; zon suh that 0 < zo1 < : : : <zon < 1 and let zo be the point (zo1 ; : : : ; zon) on (P1)n where we think of P1 asC [ f1g. This point will serve later on as a base point for some fundamentalgroup et. Now take z = (z1; : : : ; zn) 2 C n and assume for the moment thatalso 0 < z1 < : : : < zn < 1. We sometimes denote 0; 1;1 as z0; zn+1; zn+2respetively. Subsripts should be taken mod n+ 3 hene �n+3 = �0 et.De�ne on the union of the upper half plane H with the intervals (zj ; zj+1),j = 0; : : : ; n+ 2 the holomorphi funtion'(z1; : : : ; zn) : s 7! '(z1; : : : ; zn; s) = n+1Yj=0(zj � s)��jsuh that '(z; s) > 0 if s < 0. The exponent of the di�erential '(z; s)ds atin�nity equals ��n+2. Integrating this form along urves in H yields the so15



alled Shwarz-Christo�el mapping on H:S(z; t) = Z t0 '(z; s)dsHere we integrate along any path through H onneting 0 and t. This mappingan be desribed geometrially in a very nie way. It maps H biholomorphiallyonto the interior of a polygon P (z) with verties (in ounter lokwise order)vj = S(z; zj). At vertex vj the interior angle equals (1� �j)�, so by our hoieof the parameters �j , the polygon P (z) will be onvex.
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For j 2 f0; : : : ; n + 2g let ej(z) = vj+1 � vj be the j-th direted edge of P (z),or: ej(z) = Z zj+1zj '(z; s)dsThis integral formula shows that edges are analyti funtions of their argumentz near the basepoint zo and an be ontinued analytially throughoutX � (P1)ngiven by: X = f(u1; : : : ; un) 2 (P1)n j #f0; u1; : : : ; un; 1;1g = n+ 3gClearly the sum of all n + 3 edges equals zero, but there is even a strongerdependene.Lemma 2.1 As analyti funtions of the parameter z, any set of (n+2) edgesis linearly dependent (over C ).Proof: Let E be a set of (n + 2) edges and let ej be the edge that is notontained in E. Take z near zo and real valued. Reet P (z) in the edgeonneting vj and vj+1 and glue the image to P (z). The direted edges of thisbigger polygon are exatly ek and kek for k 6= j and some n+2 onstants (i.e.not depending on z) on the unit irle, heneXk 6=j(1 + k)ek(z) = 0is a non trivial linear relation on whih holds independently of z. 216



Not all (n + 1)-tuples of edges need to be linearly independent. However, wewill show that an independent set of (n+ 1) edges always exists.Theorem 2.1 Let J = f0; : : : ; n+ 2gnfk1; k2g be a set of n+ 1 elements. Theedges ej, j 2 J are linearly dependent i� both edges ek1 and ek2 are \parallel",i.e. i� �k1+1 + �k1+2 + : : :+ �k2 = 1:(This means that if z is hosen real valued then the edges ek1;2(z) of P (z) arereally parallel.)Proof: The \if" part follows from the proof of the previous lemma (if remain-ing edges are parallel, some k will equal �1). Now suppose that the remainingedges are not parallel. Then one heks that any small variation of the lengthsof the edges of P (zo) with indies in J still realizes a onvex polygon P 0 (with-out hanging the interior angles). Of ourse the lengths of the remaining twoedges are then ompletely determined. Beause any polygonal domain is thebiholomorphi image of H under a Shwarz-Christo�el mapping, it follows thatthere are numbers 0 < w1 < : : : < wn < 1 suh that the mapping S(w; t)maps H onto the interior of a onvex polygon whih is aÆnely isomorphi toP 0. These n+ 1 degrees of freedom show that the edge funtions with index inJ are linearly independent. 2The edge en+1(z) (upto a salar) is known as the Lauriella hypergeometrifuntion FD . It is a generalization of the Gauss funtion in several variables.Taylor expansion at 0 using Euler's B funtion yields:e�i�n+2en+1(z) = e�i�n+2 Z 11 '(z; s)ds == �(1� �n+2)�(1� �n+1)�(�0 + : : :+ �n) Xm2Nn (1� �n+2)jmj(�)m(�0 + : : :+ �n)jmjm!zmHere multi index notation is used and moreover:(�)m = (�1)m1(�2)m2 � � � (�n)mnm! = m1!m2! � � �mn!The above sum is absolutely onvergent if jzj j < 1 for all j and is denoted byFD(1� �n+2; �1; : : : ; �n; �0 + : : :+ �n; z1; : : : ; zn)Note that if n = 1, we have:FD(�; �; ; z1) = F (�; �; ; z1)17



Remark 2.1 De�ne n+ 1 di�erential operators as follows:�j := zj ��zj ; j = 1; : : : ; n; � := �1 + : : :+ �nLet FD := FD(�; �1; : : : ; �n; ; z1; : : : ; zn). Then one dedues from its powerseries expansion [(� +  � 1)�j � zj(� + �)(�j + �j)℄FD = 0for all j = 1; : : : ; n. The loal solution spae of these n equations at any nonsingular point is (n+1)-dimensional and spanned by the edges ej(z) for suitableparameters �. A solution f near z is ompletely determined by presribing thevalues of f and all its (�rst order) partial derivatives at z.For any z 2 X let M(z) denote the puntured Riemann sphere, M(z) =P1nf0; 1; z1; : : : ; zn;1g. OnM(z) the volume form 
(z) = (i=2)j'(z; s)j2ds^dsis well de�ned (beause all �j are real). This form an be onsidered as the pullbak of the eulidean volume on C by a \Shwarz-Christo�el" mapping (whihis lear if z is real valued). The volumeVol(M(z)) = ZM(z) 
(z)is positive and �nite. It an be expressed in a nie way using the verties vj(z).To do so, we introdue and study the notion of Area of loops in C .De�nition 2.1 Let  : [0; 1℄! C be a pieewise smooth loop (so (0) = (1)).We de�ne the Area of this loop by:Area() = 12i Z zdzThe area of a loop is just the eulidean area of the region in C that is enlosed inthis loop. (Every point is ounted as many times as the loop winds around it inounter lokwise diretion). The area of a loop gives rise to a hermitean form ona ertain (n + 1)-dimensional spae. De�ne �j = exp(�i�j) and !j = �0 � � ��jfor j 2 f0; : : : ; n + 2g. Then j!j j = 1 and !n+2 = 1. If w0; : : : ; wn+2 arethe anonial linear oordinates on C n+3 let Pol(�) � C n+3 be the (n + 1)-dimensional C -linear subspae de�ned by the linearly independent equationsn+2Xj=0 !jwj = n+2Xj=0 !jwj = 018



The R-linear subspae PolR(�) := Pol(�) \ Rn+3is a real form of Pol(�). To a vetor w 2 Pol(�) we assoiate two pieewiselinear loops P+(w) and P�(w) whih pass through the points(0; !0w0; !0w0 + !1w1; : : : ; !0w0 + : : :+ !n+1wn+1)and (0; !0w0; !0w0 + !1w1; : : : ; !0w0 + : : :+ !n+1wn+1)respetively in the given order. Note that if w 2 PolR(�) then P�(w) is theomplex onjugate of P+(w) and vie versa. We an now de�ne an hermitianstruture H on Pol(�) byH(w;w) = Area(P+(w)) �Area(P�(w))for all w 2 Pol(�). In partiular, if w 2 PolR(�) then H(w;w) = 2Area(P+(w)).If v and w are both in Pol(�) then by triangulating these polygons one anompute expliitly (oordinates of w and v indexed from 0 to n+ 2):H(v; w) = 14i X0�k<l�n+1(!k!l � !k!l)(vkwl + vlwk)Note that H restrited to PolR(�)2 is real valued. We will exploit this fat inthe proof of the following theorem.Theorem 2.2 Let n be at least 2. Then the hermitean form H on Pol(�) ishyperboli, i.e. has signature (1; n).Proof: By the remark above, it suÆes to show that the restrition of H onPolR(�)2 is hyperboli. We will diagonalize this restrition step by step. Takew 2 Pol(�) \ Rn+3>0 . Beause n � 2 there is a number j 2 f0; : : : ; n + 2g suhthat �j + �j+1 < 1. This implies that there are positive real numbers x; y suhthat !j = x!j�1+y!j+1. Note that x and y do not depend on w but only on �.Now the part of the polygon P+(w) near the jth edge looks like an angle witha triangle T lipped o�:
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The lengths of the edges of T are wj ; xwj and ywj respetively. The angle ofT opposite to the jth edge of P+(w) measures (1� �j � �j+1)�. Together thisshows Area(T ) = 12xy sin((�j + �j+1)�)w2j =: 12 tw2jLet the n+ 2 parameters �00; : : : ; �0n+1 be given by�0; : : : ; �j�1; �j + �j+1; �j+2; : : : ; �n+2respetively and w0 2 Rn+2 byw0 = (w0; : : : ; wj�1 + xwj ; wj+1 + ywj ; : : : ; wn+2)Then w0 2 PolR(�0) and if we glue T to P+(w) we obtain the bigger polygonP+(w0) having one vertex and edge less. Now t > 0 and learly2Area(P+(w)) = 2Area(P+(w0))� (ptwj)2Repeat this proedure of stiking on triangles until, after n suh steps, we reaha polygon P+(w00) whih is itself a triangle. (One only has to take are to avoida parallellogram on the way). The lengths of the edges of this triangle are allpositive linear ombinations of w0; : : : ; wn+2. Its area is quadrati in any lengthof an edge. So we onstruted n+1 real funtionals f0; : : : ; fn on PolR(�) suhthat H(w;w) = 2Area(P+(w)) = f0(w)2 � f1(w)2 � : : :� fn(w)2and by onsidering eah redution step we onlude that these funtionals arelinearly independent.Beause Pol(�) \ Rn+3>0 is open in PolR(�) we onlude that the latter equalityholds throughout PolR(�) if this open one would be non empty. Now 0 isontained in the onvex hull of the !j and any realisation of 0 as a onvexombination with all positive oeÆients yields a non zero element of the openone above. Hene the restrition of H to this real form is hyperboli and heneH is itself hyperboli.2Here is how the volume of M(z) relates to this hermitean form.Theorem 2.3 For all z 2 X the following equality holds:Vol(M(z)) = H(w(z); w(z));where w(z) 2 Pol(�) is given byw(z) = (!0e0(z); !1e1(z); : : : ; !n+2en+2(z))and the edge funtions e0; : : : ; en+2 are ontinued analytially along any pathfrom zo 2 X to z 2 X. 20



Proof: Take z in X . Let � : [0; 1℄! X be any smooth path in X onneting zoand z. We deform the half line [0;1℄ aordingly: Let  : [0; 1℄� [0; 1℄! P1(C )be ontinuous suh that1. (s; �) is a smooth non self-interseting urve for all s 2 [0; 1℄.2. (s; 0) = 0, (s; 1) = 1 and (s; �) passes through the points �(s)j (1 �j � n) in this order.3. (0; �) parametrizes the half line [0;1℄.Take (�) := (1; �) Slit P1 open along  to obtain a simply onneted domainU . Let '(z; t) be a holomorphi branh ofn+1Yj=0(t� zj)��jfor t 2 U and let S(z; t) be holomorphi on U having '(z; t) as its derivative(with respet to t) and suh that S(z; 0) = 0. The mapping S(z; t) resemblesthe Shwarz-Christo�el mapping. Now by Stokes we have:Vol(M(z)) = ZU 
(z) = 12i Z�U S(z)dS(z)Note that the boundary of U onsists of twie the urve , one in eah dire-tion. Let S+j and S�j respetively denote the images under S(z; t) of the pointsz0; : : : ; zn+2 when we pass from 0 to 1 along �U in positive and negative ori-entation respetively.

In partiular, note that S+j is the j-th vertex vj(z) (ontinued along �). Thesenumbers satisfy:1. S+0 = S�0 = 0 and S+n+2 = S�n+2.2. For all j, !j(S+j+1 � S+j ) = !j(S�j+1 � S�j )21



De�ne wj := !j(S+j+1 � S+j ) = !jej(z) for 0 � j < n + 2. If we take wn+2 :=�S+n+2 = en+2(z) then w := (w0; : : : ; wn+2) 2 Pol(�)Let S+j (t) and S�j (t) be the branhes of S(z; t) on the urve segment [zj ; zj+1℄suh that S�j (zj) = S�j and S�j (zj+1) = S�j+1. Then for all j there exist �j 2 Csuh that: S+j (t) = !2jS�j (t) + �jSubstituting this in the RHS of the Stokes equality yields (integrations are along): Vol(M(z)) = n+1Xj=0 12i  Z zj+1zj S+j (t)dS+j (t)� Z zj+1zj S�j (t)dS�j (t)! == n+1Xj=0 12i Z zj+1zj �j!2jdS�j (t) = n+1Xj=0 �j2i (S+j+1 � S+j )Hene this volume does depend only on the points S+j (= vj(z)), not on the urveonneting them. Replaing the subsequent onneting urves all by straightline segments and realling the de�nition of w 2 Pol(�) we get:Vol(M(z)) = Area(P+(w)) �Area(P�(w)) = H(w;w)This proves the theorem. 22.4 Geometry and monodromy of FDIn this setion we will assume that the parameters �j are all rational. The edgefuntions de�ned in the previous setion are multivalued analyti on X � (P1)n.They span loally an (n + 1)-dimensional spae over C at any point of X . Byremark 2.1 we onlude that the edges form in fat a loal system on X whihgives rise to a representation of the fundamental group ofX . The omplementDof X in (P1)n is the union of a �nite number of divisors with equations zi = zj .The spae (P1)n has a natural strati�ation suh that the dense open set Xis the highest dimensional stratum. The strata are indexed by partitions � off0; : : : ; n+ 2g satisfying(i) For all p 2 �: #p � n+ 1.(ii) For all p 2 �: #(p \ f0; n+ 1; n+ 2g) � 1.22



We de�ne a partial ordering on partitions suh that �1 � �2 i� �2 is a re�ne-ment of �1. The stratum D� for suh a partition is de�ned byD� = f(z1; : : : ; zn) 2 P1(C )n j zi = zj i� fi; jg � p for some p 2 �gwhere i and j range over f0; : : : ; n + 2g. Then the dimension of D� in (P1)nis #� � 3. Note that X is the stratum orresponding to the partitioning insingletons and that D� ontains D�0 in its losure i� �0 � �. The edge funtionis really a funtion F of Nilsson lass on (P1)n of determination order n+1 andsingularities along D. However, to study the funtion F it will be useful toembed X in a di�erent n-dimensional spae, Q, endowed with a strati�ationsuh that X is the stratum of highest dimension. The strata are indexed bypartitions � of f0; : : : ; n+ 2g satisfying(i) For all p 2 �: #p � n+ 1.(ii) For all p 2 �: Pj2p �j < 1:We all suh partitions �-stable or just stable. The stratum D� will again beof dimension #�� 3. We onstrut Q by using Geometri Invariant Theory ofHilbert-Deligne-Mumford [MF℄. Let N 2 N be the smallest ommon denomi-nator of all �j and set mj = N�j . Let for any m 2 Z, O(m) denote the linebundle of degree m over P1. If m � 0, we an interpret setions in this bundleas homogeneous polynomials of degree m on C 2 , where P1 = P(C 2 ). Let theline bundle L over (P1)n+3 be de�ned as the exterior tensor produt:L = n+2Oj=0 O(mj):Now PGL(C 2 ) ats by the diagonal ation on (P1)n+3 and beause Pjmj iseven, L admits a unique struture of a homogeneous PGL(C 2 ) bundle. Withrespet to L, the semi-stable (resp. stable) points of (P1)n+3 are given byf(z0; : : : ; zn+2) j for all j; Xzi=zj �i � 1 (resp. < 1)gNow we take Q as the geometri quotient:Q = (P1)n+3stable=PGL(C 2 )The spae Q is a smooth (quasi projetive) variety (e.g. see [DO, hap. 2 Thm.2℄). We embed X in Q by(z1; : : : ; zn) 7! orbit of (0; z1; : : : ; zn; 1;1):23



For any stable partition �, de�ne the stratum D� byf(z0; : : : ; zn+2) j zi = zj i� fi; jg � p for some p 2 �g=PGL(C 2 )This de�nes a strati�ation of Q as indiated. If �i + �j < 1 for some i 6= j wedenote the (n � 1)-dimensional stratum D� where � is the maximal partitionontaining fi; jg by [i j℄.By identifying X and its embedding in Q, we an view the Nilsson lass funtionF as a Nilsson lass funtion on Q with singularities along the boundary of X .Let U � X � Q be a small simply onneted neighborhood of zo 2 X . LetV = V (U) denote the C -vetorspae spanned by all determinations of F onU . Then by previously obtained results, V is (n+ 1)-dimensional. By analytiontinuation we get a natural right representation of the fundamental group ofX on V : M : �1(X; zo)! GL(V )We all this the monodromy representation. There is a anonial mapping of Uinto the dual V 0 of V , the evaluation mapping. It is given by:ev : U ! V 0; ev : z 7! evaluation at zNote that ev an be ontinued analytially throughout X . Heneforth we willview ev as a multivalued holomorphi mapping of X into V 0. We want tounderstand the behaviour of this evaluation mapping, or in fat its projetiveversion: pev : X ! P(V 0)In partiular we want to study when (i.e. for whih �) this mapping has asingle valued holomorphi inverse on its image. If suh an inverse exists, thisimplies that monodromy indues a disrete group in PGL(V 0). The idea is tostudy loal properties of pev �rst and use the results to understand the globalproperties.Theorem 2.4 The spae V 0 admits a hyperboli hermitean form H, invariantunder dual monodromy (the transpose of M , i.e. a left representation). More-over, evaluation maps X into the positive part of V 0 (with respet to H).Proof: Let w again be the (multivalued) mappingw(z) := (!0e0(z); !1e1(z); : : : ; !n+2en+2(z))Then w(z) 2 Pol(�). Beause e0; : : : ; en span V , by theorem 2.2 there exists ahyperboli hermitean matrix H 2 Mat(n+ 1; C ) suh thatH(w(z); w(z)) = X0�i;j�nHijei(z)ej(z)24



for all z 2 X . Beause the left hand side of this equality equals Vol(M(z)) theright hand side is invariant under monodromy. Let �0; : : : ; �n be the dual basisof V 0 with respet to e0; : : : ; en. De�ne H(�i; �j) := Hij . This is an invarianthyperboli hermitean form and:H(ev(z); ev(z)) = H(Xi ei(z)�i;Xj ej(z)�j) ==Xi;j Hijei(z)ej(z) = Vol(M(z)) > 0This proves the theorem. 2The subspae B of P(V 0) given byB := f[v℄ j H(v; v) > 0gis isomorphi to the omplex unit ball in C n . By the previous theorem weonlude that pev maps X into B.Theorem 2.5 The mapping pev is everywhere loally biholomorphi.Proof: For y 2 X let f0; : : : ; fn be a loal basis of determinations and y1; : : : ; ynsome loal oordinates. Then pev is loally biholomorphi at y i� the followingwronskian does not vanish near y:det0BBBBBB� f0 �f0�y1 : : : �f0�ynf1 �f1�y1 : : : �f1�yn... ... ...fn �fn�y1 : : : �fn�yn
1CCCCCCANow by remark 2.1 every determination near y is ompletely determined by itsvalue and those of its �rst order partial derivatives at y. This learly impliesthat the wronskian does not vanish at y. 2To examine loal behavior along the singular lous, we extend the integral rep-resentation of the edges tof(z0; : : : ; zn+1;1) 2 (P1)n+3 j #fz0; : : : ; zn+1;1g = n+ 3gby the formula Eij := (zn+1 � z0)1��n+2 Z zjzi n+1Yk=0(s� zk)��kds:25



Here integration is along any path avoiding (exept in its end points) all zk.One omputesEij = Z t��0(t� 1)��n+1 nYk=1(t� zk � z0zn+1 � z0 )��kdt(integrate along the transformed path) so E is just an extension of the edgesinvariant under the stabilizer of 1 (linear transformations). From this integralrepresentation one dedues the following important lemma.Lemma 2.2 Let J � f0; 1; : : : ; n + 2g be suh that 2 � #J � n + 1 and�J := Pj2J �j < 1. Let � denote the maximal stable partition ontainingJ . Then the Nilsson lass funtion F only has two di�erent exponents alongthe stratum D�. The several possibilities are listed below with their respetivemultipliities.J satis�es: n+ 2�#J times #J � 1 timesf0; n+ 1g 6� J � f0; : : : ; n+ 1g 0 1��Jf0; n+ 1g � J � f0; : : : ; n+ 1g 1� �n+2 2��J � �n+2n+ 2 2 J � f1; : : : ; n; n+ 2g �J � �n+2 1� �n+2None of the above �J � 1 0Proof: Compute this from the extended integral representation of the edges.2Corollary 2.1 For a stratum as in the previous lemma and q 2 D�, the limitlimz!q pev(z) exists and does not depend on loal monodromy near q. A smallneighborhood of q interseted with D� will be mapped into a subspae of dimen-sion #J � 1 of P(V 0) by this limiting proess.Proof: Beause only evaluation upto some salar multiple is onsidered, theexponents along D� an be shifted to obtain an exponent 0 with multipliityn + 2 � #J and an exponent 1 � �J with multipliity #J � 1. The orollarynow follows from the fat that 1��J > 0.2For strata of odimension one we need the following stronger result.Theorem 2.6 Let q 2 [i j℄ for some (n � 1)-dimensional stratum [i j℄ of Q.There exists a neighborhood Qq of q, holomorphi funtions q0; : : : ; qn on Qqand homogeneous oordinates on P(V 0) suh that(i) The set [q0 = 0℄ equals [i j℄ \Qq.26



(ii) The mapping Qq ! P(V 0), w 7! (q0(w) : : : : : qn(w)) is biholomorphi.(iii) The projetive evaluation mapping pev on Qq is just(q0 : q1 : : : : : qn) 7! (q1��i��j0 : q1 : : : : : qn)Proof: Aording to lemma 2.2 there exists a oordinate neighborhood(Qq; w1; : : : ; wn)of q and holomorphi funtions f0; : : : ; fn on Qq suh that(i) The set [w1 = 0℄ equals [i j℄ \Qq.(ii) At eah point of Qq the funtionsf0 � w�1 ; f1 � w�1 ; : : : ; fn � w�1form a basis of determinations of F . Here � and � are the two exponentsalong [i j℄.Then with respet to suitable homogeneous oordinates of P(V 0) evaluation onQq is: pev : w 7! (w1��i��j1 f0 : f1 : : : : : fn)Now it is well known that the Wronskian of f0; : : : ; fn with respet to w1; : : : ; wnsatis�es a �rst order system of linear di�erential equations and from the expli-itly known equations for the Lauriella funtion one dedues that the Wronskianhas the following form near q: h � w�+n��11Here h is a holomorphi funtion whih does not vanish at q. Expliitly om-puting this wronskian using Cramer's rule, we �nd that both f0 anddet0BBBBBB� �f1�w1 : : : �f1�wn�f2�w1 : : : �f2�wn... ...�fn�w1 : : : �fn�wn
1CCCCCCAdo not vanish at q. By taking Qq small enough, the funtionsq0 := w1 � f1=(1��i��j)0 ; q1 := f1; : : : ; qn := fnsatisfy the onditions of the theorem. 227



2.5 Rami�ed overings of QIn this setion we will prove the following main result of these notes:Theorem 2.7 Suppose that for all strata [i j℄ of Q the exponent di�erene1 � �i � �j along [i j℄ equals 1=mij for some mij 2 N�2 . Then the image ofthe projetive evaluation mapping is dense in B and there exists a single valuedholomorphi mapping � : B ! Q suh that on X one has � Æ pev = idX .We will prove this result by studying rami�ed overings of Q. A ruial in-gredient of the proof is the existene of a monodromy invariant metri d on Bgenerating its topology. This is the so-alled Poinar�e-Bergman metri de�nedas follows.De�nition 2.2 De�ne a metri d on B by:osh d([v1℄; [v2℄) = jH(v1; v2)j[H(v1; v1)H(v2; v2)℄1=2For any � > 0 denote the ball of radius � entered at b 2 B by B(�; b):B(�; b) := fb0 2 B j d(b0; b) < �gThis metri is learly monodromy invariant, and it generates the topology ofB. Let � : eX ! X be the universal overing of X . Lift pev to a (single-valued) loally biholomorphi map pev on eX. Then Aut( eXjX) is isomorphi to�1(X; zo).Theorem 2.8 Suppose q 2 D� and for all strata [i j℄ ontaining q in theirlosure the exponent di�erene 1 � �i � �j equals 1=mij for some mij 2 N�2 .Let ��(�) : X�(�) ! X be the universally rami�ed overing of X rami�ed oforder mij along [i j℄. So any mij-fold loop around [i j℄ indues the identityautomorphism of X�(�) and X�(�) is universal with respet to this property.Then the overing X�(�) embeds in a rami�ed overing�(�) : X(�)! [�0��D�0i.e. X�(�) is a submanifold of X(�) and ��(�) is the restrition of �(�) toX�(�). Moreover, pev indues a loally biholomorphi mapping on X(�), alsodenoted by pev.Proof: From theorem 2.6 it follows that the evaluation mapping is invariantunder analyti ontinuation along any mij -fold loop around [i j℄. Hene pev28



desends to a loally biholomorphi mapping pev on X�(�). The proof nowproeeds by indution on the dimension n. In dimension one this embedding ofoverings is just the remark that C � zm! C �extends to a mapping of C onto C . Let w 2 D�0 for some stable �0 � �. Letp1; : : : ; ps 2 �0 be the parts ontaining at least two elements. Then there areloal oordinatesw01 ; : : : ; w0#�0�3; w11 ; : : : ; w1#p1�1; w21; : : : ; w2#p2�1; : : : ; ws#ps�1on the polydis jwmj j < 1 entered at w suh that the strata in this polydis aredesribed as the intersetion struture of the hyper planes:Xk�j�lwmj = 0Here m ranges over f1; : : : ; sg and and k; l over all values suh that 1 � k � l �#pm � 1. Let �m denote the mth \oordinate slie", i.e. the set of points ofwhih only the wm� oordinates are non-zero. Then the polydis neighborhoodof w is a produt �sj=0�jMoreover, the strati�ation is ompatible with this produt, i.e. strata areproduts of their projetions on the oordinate slies. Every slie �p withits strati�ation is isomorphi to a polydis neighborhood on some geometriquotient Qp of dimension #p � 1 (inluding strati�ations). For example take�j for j 2 p and twie 1� 12 Pj2p �j as the new #p+ 2 parameters.If no set in � has n+1 elements, then for all points w as above the fators of suhproduts have lower dimension than Q. This allows an indutive proedure inthis ase. Let U be a polydis neighborhood of w as before, then the universallyrami�ed overing of U \X embeds in a rami�ed overing of U , and pev extendsloally biholomorphially over this rami�ed overing. (Beause U \X is just aprodut of lower dimensional situations). The only automorphism of this loalrami�ed overing over U that �xes pev is the trivial automorphism beausepev is loally biholomorphi everywhere and the pre-image of w in the overingis �xed by any automorphism. This implies that the quotient map of thisuniversally rami�ed overing of U \ X to the overing X�(�) is atually anembedding. So all loal extensions �t together and we onlude that X�(�)embeds in a overing X(�) as stated.By theorem 2.6 the evaluation mapping extends to a loally biholomorphi map-ping on all points ofX(�) above o-dimension one strata. Then by Hartog's the-orem the evaluation mapping extends loally biholomorphially to all of X(�).29



The ase remains that � ontains a set of n + 1 elements (i.e. fqg is itself astratum). By reasoning in the same way as before, we onlude that X�(�)embeds in a rami�ed overing�� : X�(�)! [�0>�D�0and evaluation extends loally biholomorphially to this overing. We have toshow that it extends over the point q. Let Qq be a small ball neighborhood ofq and Q� a onneted omponent of (��)�1(Qq).By orollary 2.1 on Q� the limit lim��(w)!q pev(w) =: b is a well de�ned pointin B, in partiular, it is �xed by loal monodromy near q. Let K � Qq be aompat ball around q suh that for any w 2 Q� \ (��)�1(�K) the distaned(pev(w); b) is at least 2Æ > 0. Suh a K exists beause pev is loally biholo-morphi and this distane is invariant under the automorphisms of Q� j Qq.We will show that pev maps some open subset of K� := (��)�1(K) biholomor-phially onto the puntured ball B(Æ; b) � fbg. Then by Hartog �� Æ (pev)�1extends over b whih shows that X�(�) indeed embeds in a overing X(�) asstated.Take a overing sequene of ompat subsets of K � fqgK1 �� K2 �� : : :i.e. for all j, Kj is ontained in the interior of Kj+1 and [fKj j j � 1g =K � fqg. If � > 0 a point w 2 Q� will be alled �-wide if pev maps someneighborhood of w biholomorphially onto the ball B(�; pev(w)).Lemma 2.3 For eah j � 1 there exists an �j > 0 suh that any point w 2K�j := (��)�1(Kj) is �j-wide.Proof: Consider for all N � 1 the setWN = fw 2 j w is �-wide for some � > 1=ng:The following properties hold for these sets:(i) WN is an open set for all N .(ii) If N �M then WN �WM .(iii) Eah WN is Aut(Q�jQq) stable.(iv) [fWN j N � 1g = Q�.Property (iii) follows by invariane of the distane d on B and (iv) followsbeause pev is loally biholomorphi. Now all Kj are ompat and hene there30



exist integers 1 � N1 � N2 � : : : suh that K�j � WNj for all j. This impliesthat all w 2 K�j are 1=Nj-wide. 2Let bo = pev(w) be in B(Æ; b) for some w 2 Q�. Loally near bo the mappingpev has a holomorphi inverse  . Let  : [0; 1℄ ! B(Æ; b) � fbg be any urvein the puntured ball suh that (0) = bo. Suppose that  an be ontinuedanalytially along  upto (but not neessarily inluding) (t) for some t 2 (0; 1℄.Then  maps into K� beause its image annot ross �K�. If  Æ (t0) 2 K�jfor some t0 2 (0; t) suh that d((t0); (t)) � �j then by the wideness lemma,  an be ontinued upto and inluding (t). Now this is always the ase for theonly other possibility is that �� Æ Æ tends to q if t0 tends to t. But this wouldimply that (t) = b whih we assumed not to be the ase.Now b is of o-dimension at least two in B(Æ; b) so �� Æ extends to a holomor-phi mapping on B(Æ; b) by simply-onnetedness of B(Æ; b)� fbg and Hartog'stheorem. This mapping extends the overing �� over q, proving the existeneof an embedding of X�(�) in X(�) as stated and pev extends loally biholo-morphially. 2(theorem 2.8)The main theorem follows from theorem 2.8:Proof: (Of theorem 2.7). Suppose that for all strata [i j℄ the exponent di�er-ene 1��i��j equals 1=mij for some mij 2 N�2 . Let ��(m) : X�(m)! X bethe universally rami�ed overing with rami�ation order mij along [i j℄. Thenpev desends to a loally biholomorphi mapping pev on X�(m) beause it isinvariant under ontinuation along any mij fold loop around [i j℄.For any q 2 D� a onneted omponent of (��)�1(Qq) for some neighborhoodQq is isomorphi to a onneted omponent of X�(�) over Qq beause pev isinvariant under the trivial automorphism of suh a omponent only (by theorem2.8). This implies that X�(m) embeds in a rami�ed overing �(m) : X(m)! Qin the same sense as before.The (quasi projetive) variety Q has a natural (projetive) ompati�ation Q(the universal ategorial quotient (P1)n+3semistable=PGL(C 2 )). The omplementQ�Q onsists of a �nite number of (singular) points and if q ! Q�Q then pev(q)will tend arbitrarily far away from any point in B (with respet to the metri d).One an ompute this simply using the integral representations of edges or seethe disussion in [DM℄. Now a wideness argument applied to X(m) j Q as beforeshows that any loal holomorphi inverse of pev extends to a global inverse onB. Moreover pev establishes an isomorphism between (X(m);Aut(X(m)jQ))and (B;M(�1(X; zo))).2 31



2.6 Some additional resultsThe main theorem disussed here is not the end of the story. Suppose that forsome i; j equality �i = �j holds. Then interhanging oordinates i and j on(P1)n+3 (numbered 0; : : : ; n + 2) indues a transformation of Q. The Nilssonlass funtion F of edges is invariant under this transformation. So we havea subgroup � of the symmetri group Sn+3 ating on Q and stabilizing F .This allows one to onsider the indued system F on the quotient �nQ. Theupshot of this is that the exponent along a orresponding stratum [i j℄ will be(1� �i � �j)=2 and in fat the more general theorem beomes:Theorem 2.9 Suppose that for all strata [i j℄ the exponent di�erene 1��i��jis either 1=mij (if �i 6= �j) or 2=mij (if �i = �j) then the evaluation mappingpev on �nQ has a holomorphi inverse on B.Unfortunately, this quotient will in general be singular beause � does not evenhave to at free on X . So one has to take are of additional details to deal withthis, essentially without hanging the idea of the proof of suh a theorem (see[M℄). In fat, would this quotient be smooth, then the same proof as disussedin these notes would apply. I omitted this additional theory for the sake ofkeeping things more transparant.A seond important remark is that one an replae the ondition that �j 2 (0; 1)for all j by the ondition �j > 0 for all j. This would add the ellipti andparaboli ases to our theory (if for some j, �j > 1 or �j = 1 respetively).One an again prove the above theorem for these ases. (Now Q will just beprojetive spae Pn). Though in addition to disussing symmetries �, one hasto do some extra work to infer invariant forms for the monodromy (whih willbe de�nite and semi-de�nite respetively).In the ellipti ase, the monodromy is �nite, implying that Lauriella's FD isalgebrai. A holomorphi inverse for pev then exists throughout P(V 0). In theparaboli (sometimes alled eulidean) ase monodromy ats by aÆne transfor-mations. A holomorphi inverse for pev then exists on a aÆne spae in P(V 0).In this paraboli ase the onstant funtions always satisfy the equations of FD !Some work was done on these ellipti and paraboli ases, though by di�erentmeans. The question investigated is if monodromy is disrete, not if an inverseof the evaluation exists. For example see [Sa℄, [CW℄. Cohen and Wolfart usearithmeti properties of monodromy to dedue �niteness or disreteness (in theeulidean ase).It is an interesting remark that in the paraboli ases, the quotient �nQ isalways a weighted projetive spae. Hene some positive results are obtainedfor the onjeture in [BS℄ that the quotient of an aÆne spae with respet toa disrete oompat ation of a group generated by reetions will always beweighted projetive spae. The weights are essentially just the degrees of the32



irreduible fators of �. Here is a list of the paraboli ases:n denominator numerators weights2 4 4 1 1 1 1 2 3 46 6 2 2 1 1 1 2 26 6 3 1 1 1 1 2 33 6 6 2 1 1 1 1 1 2 3 44 6 6 1 1 1 1 1 1 2 3 4 5 6The next setion shows a list of all 102 ases in whih evaluation has a globallyholomorphi inverse.
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2.7 Tablesn = 2# den. Numerators1 3 2 1 1 1 12 4 2 2 2 1 13 4 3 2 1 1 14 4 4 1 1 1 15 5 2 2 2 2 26 6 3 3 2 2 27 6 3 3 3 2 18 6 4 3 2 2 19 6 4 3 3 1 110 6 4 4 2 1 111 6 5 2 2 2 112 6 5 3 2 1 113 6 5 4 1 1 114 6 6 2 2 1 115 6 6 3 1 1 116 6 7 2 1 1 117 6 8 1 1 1 118 8 4 3 3 3 319 8 5 5 2 2 220 8 6 3 3 3 121 9 4 4 4 4 222 10 6 5 3 3 323 10 6 6 3 3 224 10 7 4 4 4 125 10 8 3 3 3 326 10 9 3 3 3 227 12 5 5 5 5 428 12 6 5 5 4 429 12 6 5 5 5 330 12 7 5 4 4 431 12 7 6 5 3 332 12 7 7 4 4 233 12 7 7 6 2 234 12 8 5 5 3 335 12 8 5 5 5 136 12 8 7 3 3 337 12 9 7 4 2 238 12 9 9 2 2 239 12 10 5 3 3 340 12 11 7 2 2 2 34



41 14 8 5 5 5 542 14 11 5 5 5 243 15 8 6 6 6 444 18 8 7 7 7 745 18 10 7 7 7 546 18 10 10 7 7 247 18 11 8 8 8 148 18 13 7 7 7 249 18 14 13 3 3 350 20 10 9 9 6 651 20 13 9 6 6 652 20 14 11 5 5 553 24 14 9 9 9 754 24 19 17 4 4 455 30 22 11 9 9 956 30 23 22 5 5 557 30 26 19 5 5 558 42 26 15 15 15 1359 42 34 29 7 7 7n = 3# den. Numerators1 3 1 1 1 1 1 12 4 2 2 1 1 1 13 4 3 1 1 1 1 14 6 3 2 2 2 2 15 6 3 3 2 2 1 16 6 3 3 3 1 1 17 6 4 2 2 2 1 18 6 4 3 2 1 1 19 6 4 4 1 1 1 110 6 5 2 2 1 1 111 6 5 3 1 1 1 112 6 6 2 1 1 1 113 6 7 1 1 1 1 114 8 3 3 3 3 3 115 10 5 3 3 3 3 316 10 6 3 3 3 3 217 12 5 5 5 3 3 318 12 7 5 3 3 3 319 12 7 7 4 2 2 220 12 9 7 2 2 2 2 35



n = 4# den. Numerators1 4 2 1 1 1 1 1 12 6 2 2 2 2 2 1 13 6 3 2 2 2 1 1 14 6 3 3 2 1 1 1 15 6 4 2 2 1 1 1 16 6 4 3 1 1 1 1 17 6 5 2 1 1 1 1 18 6 6 1 1 1 1 1 19 10 3 3 3 3 3 3 210 12 7 7 2 2 2 2 2n = 5# den. Numerators1 4 1 1 1 1 1 1 1 12 6 2 2 2 2 1 1 1 13 6 3 2 2 1 1 1 1 14 6 3 3 1 1 1 1 1 15 6 4 2 1 1 1 1 1 16 6 5 1 1 1 1 1 1 1n = 6# den. Numerators1 6 2 2 2 1 1 1 1 1 12 6 3 2 1 1 1 1 1 1 13 6 4 1 1 1 1 1 1 1 1n = 7# den. Numerators1 6 2 2 1 1 1 1 1 1 1 12 6 3 1 1 1 1 1 1 1 1 1n = 8# den. Numerators1 6 2 1 1 1 1 1 1 1 1 1 136



n = 9# den. Numerators1 6 1 1 1 1 1 1 1 1 1 1 1 12.8 Literature[A℄ P. Appell, Sur les fontions hyperg�eom�etriques de deux variables. Jour.de Math. VIII (1882), 173-216[AK℄ P. Appell, J. Kamp�e de F�eriet, Fontions hyperg�eom�etriques et hyper-sph�eriques, Gauthier-Villars, Paris, 1926[BH℄ F. Beukers, G. Hekman, Monodromy for the hypergeometri funtionnFn�1, Invent. Math. 95 (1989) 325-354.[BS℄ J. N. Bernstein, O.V. Shwarzman, Chevalley's theorem for omplex rys-tallographi Coxeter groups, Funt. Anal. Appl. vol. 12 no. 4 (1978),308-310[CW℄ P.B. Cohen, J. Wolfart, Algebrai Appell-Lauriella funtions, Analysis12 (1992), 359-376[DM℄ P. Deligne, G.D. Mostow, Monodromy of hypergeometri funtions andnon-lattie integral monodromy, Publ. Math. IHES 63 (1986), 5-90[DO℄ I. Dolgahev, D. Ortland, Point sets in projetive spaes and theta fun-tions, SMF Ast�erisque 165, 1988[K℄ F. Klein, Vorlesungen �uber die hypergeometrishe Funktion. SpringerGrundlehren 39, 1981.[L℄ G. Lauriella, Sulle funzioni ipergeometrihe a piu variabili, Rend. Cir.Mat. Palermo VII (1893), 111-158[M℄ G.D. Mostow, Generalized Piard latties arising from half-integral on-ditions, Publ. Math. IHES 63 (1986), 91-106[MF℄ D. Mumford, J. Fogarty, Geometri Invariant Theory, seond enlargededition, Erg. d. Math. 34, Springer Verlag, 1982[P1℄ E. Piard, Sur une extension aux fontions de deux variables du probl�emede Riemann relatif aux fontions hyperg�eom�etriques. Ann. E. Norm.Sup. II, 10 (1881), 304-322[P2℄ |, Sur les fontions de deux variables ind�ependantes analogues aux fon-tions modulaires, Ata Math. 2 (1883), 114-12637



[P3℄ |, Sur les groupes de ertaines �equations di��erentielles lin�eaires, Bull.des Si. Math. II, 9 (1885), 202-209[R℄ B. Riemann, Beitr�age zur Theorie der durh die Gaussishe ReiheF (�; �; ; x) darstellbaren Funtionen, Abh. K�onig. Ges. Wiss. G�ottingenBand 7[Sa℄ T. Sasaki, On the �niteness of the monodromy group of the system ofhypergeometri di�erential equations (FD). J. Fa. Si., Univ. of Tokyo,24 (1977), 565-573[S℄ H.A. Shwarz, �Uber diejenigen F�alle, in welhen die Gaussishe hyperge-ometrishe Reihe eine algebraishe Funtion ihres vierten Elements dar-stellt, Jour. de Crelle 54 (1873), 292-335[T℄ T. Terada, Probl�eme de Riemann et fontions automorphes provenant desfontions hyperg�eom�etriques de plusieurs variables, Journ. Math. KyotoUniv., 13 (1973) 557-578.[Th℄ W. Thurston, Shapes of polyhedra, preprint of the university of Minnesota,1992
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Chapter 3Reetion groups
3.1 IntrodutionThe investigations that lead to the results in this hapter were mainly motivatedby the following three things:1. The intriguing paper by Orlik and Solomon [OS℄ in whih they study(using a omputer) the invariants of Shephard groups. They show thatthe generating homogeneous invariants an be hosen in suh a way thattheir disriminant is the same as that of a related real reetion group.2. The paper by Deligne and Mostow [DM℄. In this paper they onstrutgroups of transformations of a omplex ball generated by reetions thatat disretely. These groups arise as a monodromy group of a hypergeo-metri funtion in several variables (a Lauriella FD).3. The work of Hekman and Opdam on hypergeometri funtions and Besselfuntions assoiated to (rystallographi) root systems as in [H℄, [O℄ andother papers.The goal was to understand the results of Orlik and Solomon in an intrinsiway as follows. Start with the omplement of a disriminant of a �nite realreetion group W and try to onstrut the omplex groups as monodromygroups of ertain speial funtions assoiated to the root system of W .This turns out to be a produtive idea. The omplex groups arise this way by\altering" the orders of the generating reetions of W . We all these groupstrunated braid groups. These fall into three ategories: the �nite, the paraboliand the hyperboli groups. For eah of these ategories the results inlude:39



1. Geometri information about rami�ed overings of disriminant omple-ments.2. Presentations for the omplex (not neessarily �nite) groups.3. Chevalley like theorems on the invariants of these groups.The results of [OS℄ and of Coxeter [C℄ (on presentations of �nite omplex re-etion groups) are onsequenes of the theory for the �nite ase.The results in the paraboli ase an be related to results of Looijenga [L℄ andBernstein Shwarzman [BS℄. In [BS℄ it is onjetured that if a group generatedby omplex reetions of an aÆne spae ats disretely and oompatly thequotient spae is always weighted projetive. Indeed, in our examples the quo-tient is weighted projetive and the weights are diretly related to the degrees ofthe real Coxeter group. As in [L℄ a Chevalley like theorem is proved for ertainrings of theta funtions.The hyperboli ase gives more examples of disrete groups ating on a omplexball of whih the quotient (and other things) an be desribed expliitly. Tworemarks should be made. Firstly there is a non zero intersetion between thispaper and [DM℄. The theory for lassial root systems an be translated to thetheory of Lauriella's FD. Details will appear in a seperate artile. Seondly,at the moment not all hyperboli ases are treated in all detail. For severalgroups the ball quotient will no longer be a weighted projetive spae. Thealgebrai onstrution of these quotients similar to Geometri Invariant Theoryis only skethy on some points. Results upto this point are disussed in the nexthapter.The results for n = 2 are (more or less) analogous to those of Milnor in [N℄ onovering spaes of Pham-Brieskorn varieties.The rough plans for the development of the theory were laid out by G. Hekman.I would like to thank him for his enormous support. I would also like to thankE. Looijenga, J. Steenbrink and H. de Vries for several interesting disussionsand reading of the manusript.3.2 Coxeter groups, braid groups and reetionrepresentationsFirst we introdue some onepts from the theory of root systems and reetiongroups Let (E; (�; �)) be an Eulidean vetor spae, dim(E) = n. Let V be itsomplexi�ation, V = C 
E. Extend (�; �) to a bilinear form on V . Let R � Ebe a normalized rootsystem of full rank, i.e. a �nite set suh that:1. (�; �) = 2 for all � 2 R. 40



2. s�(�) := � � (�; �)� 2 R for all �; � 2 R.3. SpanR(R) = E.If in addition the following holds4. If R = R1[R2 and (�1; �2) = 0 for all �1 2 R1 and �2 2 R2, then R1 = ;or R2 = ;then we all R irreduible. For any � 2 R we denote its dual in V � by ��, i.e.��(v) = (�; v) for any v 2 V . De�ne the regular points in V by:V reg = fv 2 V j (�; v) 6= 0; all � 2 RgTake a set of positive roots R+, R = R+ [�R+ and simple roots �1; : : : ; �n 2R+. Denote the positive hamber in E by E+:E+ = fv 2 E j (v; �i) > 0 for all i 2 f1; : : : ; nggDenote the group generated by all reetions s�, � 2 R by W :W = hs� j � 2 Ri = hs�1 ; : : : ; s�niDenote the fundamental \weights" by �1; : : : ; �n, i.e. (�i; �j) = Æij . De�ne theCoxeter integers mij by: mij = order(s�is�j )Then for i 6= j: (�i; �j) = �2 os( �mij )We denote the Coxeter element s�1s�2 � � � s�n of W by , and the Coxeter num-ber of W by h, i.e. order() = h. If R is irreduible the exponents of W arewritten m1; : : : ;mn.The matrixM = (mij) is alled the Coxeter matrix of R. Suh a matrix an bedenoted graphially as follows. Take n verties v1; : : : ; vn. Whenever mij > 2for some i 6= j, onnet vi and vj by an edge, moreover, if mij > 3 write thisnumber along the edge. We will identify the diagram and the matrix, so wean speak of a Coxeter diagram M with Coxeter integers mij , et. Next weintrodue a braid group assoiated to M .De�nition 3.1 For a; b in some group or algebra and m 2 N, we de�ne (a; b)mby: (a; b)m = (ab)m2 if m is even(a; b)m = (a; b)m�1 � a if m is odd41



The braid group B(M) assoiated with the Coxeter diagram M is the groupde�ned by generators and relations as follows:B(M) = hg1; : : : ; gnj(gi; gj)mij = (gj ; gi)mji ; 1 � i < j � niThe element g1g2 � � � gn is alled a Coxeter element in B(M).Lemma 3.1 Take i; j 2 f1; : : : ; ng and i 6= j. The following statements areequivalent:1. The two generators gi and gj in B(M) are onjugate.2. The verties vi and vj are still onneted in the diagram M if we erase alledges along whih there is an even number.3. The simple roots �i and �j are in the same W -orbit.Proof: Equivalene of 1 and 2 is proved as in [B, Ch. IV, x1, prop. 3℄ (TakeS = fg1; : : : ; gng and use mij instead of the order of gigj). Now �i and �j arein the same W -orbit if and only if s�i and s�j are onjugate whih is equivalentto 2 by the same proposition. 2The following struture theorems of Chevalley and Brieskorn are of fundamentalimportane:Theorem 3.1 (Chevalley) The algebra of W -invariant polynomials on V isitself a polynomial algebra, i.e.:P [V ℄W �= C [P1 ; : : : ; Pn℄Here P1; : : : ; Pn are homogeneous of degree di := mi+1 and satisfy no algebrairelation. The orbit-spae WnV is therefore isomorphi to an aÆne spae [Ch℄.De�nition 3.2 The polynomial D 2 C [X1 ; : : : ; Xn℄ given byD(P1; : : : ; Pn) = Y�>0(��)2is alled the disriminant of R. The zero lous [D = 0℄ is denoted by �. Theomplement of � in C n is denoted by X.The projetion P : V ! C n ; P : v 7! (P1(v); : : : ; Pn(v))is a rami�ed overing of degree jW j with branh lous �. The automorphismgroup of this overing is exatly W .The C � -ation on the vetorspae V indues a C � -ation on C n :42



De�nition 3.3 Let z = gd(d1; d2; : : : ; dn) be the order of the enter of W ,(i.e. z 2 f1; 2g). De�ne a C � -ation by:y � (x1; x2; : : : ; xn) = (yd1x1; yd2x2; : : : ; ydnxn); any y 2 C �The quotient C �n(C nnf0g) will be denoted by Pd(C n ). It is alled a weightedprojetive spae with weights dj=z.Note that P (y � v) = y � P (v) for any y 2 C � and v 2 V , so the ation restritsto an ation on X .De�nition 3.4 Let I � f1; 2; : : : ; ng have m elements. The subsetfP (v) j v 2 V; (�i; v) = 0 i� i 2 Igof � is alled a (n � m)-dimensional faet and if I = fig a type i reetionplane. The union of all (n�1)-dimensional faets is alled the set of subregularpoints.Theorem 3.2 (Brieskorn) Pik a basepoint xo 2 E+, and write yo = P (xo).The fundamental group �1(X; yo) is isomorphi to B(M). Moreover, if we de�neloops Gj by Gj : [0; 1℄! X; Gj(t) = P (xo + e�it � 12 (xo; �j)�j)then the homotopy lasses of these loops generate the fundamental group andthe map Gj 7! gj extends to an isomorphism.Remark 3.1 If Y : [0; 1℄! X is given byY (t) = P (e 2�itz xo)then Y is homotopi to (G1G2 � � �Gn)h=z. In partiular the latter element isentral in the fundamental group. Moreover it even generates the enter [D1℄.We will now introdue marked Coxeter diagrams and trunated braid groups.De�nition 3.5 A marked Coxeter diagram is a Coxeter diagram M as beforetogether with n integers p1; : : : ; pn all at least 2 suh that pi = pj if the vertiesvi and vj are onneted in the mod 2 redued diagram M . A marked diagram isgraphially denoted by attahing the number pi to the vertex vi if pi > 2.From now on, we will write (M;p1; : : : ; pn) or simply (M;p), when referring toa marked diagram. 43



De�nition 3.6 The trunated braid group B(M;p) assoiated to a marked di-agram (M;p) is a group given by generators and relations as follows:B(M;p) = hg1; : : : ; gnj(gi; gj)mij = (gj ; gi)mji ; gpii = e; 1 � i � j � niWe now onstrut a holomorphi family of representations of the braid groupB(M), the so-alled reetion representation. Throughout these notes, �m de-notes the primitive root of unity exp(2�i=m).De�nition 3.7 A multipliity parameter k : R! C is a map whih is onstanton W -orbits in R. We denote the spae of all multipliity funtions by K. Fork 2 K we will sometimes write ki instead of k�i .As a C -vetor spae, K is isomorphi to C t if t is the number of W -orbits in R(i.e. t 2 f1; 2g).De�nition 3.8 The restrited multipliity parameters are de�ned by:K 0 = fk 2 K j 0 < Re(ki) < 12 ; for all ig[fk 2 K j � 14 < Re(ki) < 14 ; for all igThen for all k 2 K 0 and i; j suh that mij > 2:Re(2(os�(ki � kj) + os 2�mij )) > 0We de�ne holomorphi funtions on K 0 by:qj = exp(�2�ikj); for all jhij =8><>: q1=2j + q�1=2j If i = j0 If i 6= j and mij = 2�(2(os�(ki � kj) + os 2�mij ))1=2 If i 6= j and mij > 2Here we take 11=2 = 1.Observe that hij(k) 6= 0 if mij > 2 for all k 2 K 0. We will denote the anonialbasis of Cm by e1; : : : ; em.De�nition 3.9 Let for all i, the matrix ri 2 Mat(n;O(K 0)) be given by:(ri)mj = Æmj � Æmiq1=2i hij44



Theorem 3.3 The map % : fg1; : : : ; gng ! Mat(n;O(K 0)) mapping gi to riextends to a anti-homomorphism on B(M), i.e. a map % suh that %(g1g2) =%(g2)%(g1). Moreover, if k 2 K 0 is real-valued, then the matrix H = (hij) isreal-valued at k, symmetri and satis�es:ht%(g)H%(g)i (k) = H(k); all g 2 B(M)Proof: As in [CIK, 9.1 & 9.3℄ if one takes B(�r; �s) = hrs and ur = q�1r . 2Note that for any k 2 K 0 the speialisation %(k) is a right representation onC n . The matrix ri(k) is a omplex reetion with speial eigenvalue �qi(k). Ifk 2 K 0 is real-valued then ri(k) is unitary with respet to H(k). Note that if weset ki = 0 for all i, we just get the geometri right representation of a Coxetergroup (w.r.t. a basis of simple roots), in partiular H(0) = ((�i; �j)).Remark 3.2 Suppose we are given two omplex reetions a1, a2 in C 2 :ai(ej) = ej + sijeiIf these reetions satisfy a braid relation of m fators then one an prove thats12s21 = q1 + q2 + (� + ��1)q1=21 q1=22where qi = �(1 + sii) and � is a mth root of unity. Now suppose our Coxeterdiagram M is a tree. Then the homomorphism % is up to onjugation the uniqueone suh that1. For any k 2 K 0, and any 1 � i � n, the speialisation %(k)(gi) is aomplex reetion.2. The speial eigenvetors of %(k)(gi), i = 1; : : : ; n span C n .3. The speialisation %(0) is the real reetion representation.One an prove this by indution on n. Consider an extremal node from thediagram. This extremal node is onneted to exatly one other node of thediagram. This redues the proof to a rank two situation and there one uses thefat that s12s21 6= 0.De�nition 3.10 If (M;p) is a marked diagram, and we take k 2 K 0 suh thatki = 1=2� 1=pi for all i we de�ne the matrix group G(M;p) byG(M;p) = hri(k) j 1 � i � niThe map gi 7! ri(k) extends to a homomorphism on B(M;p). We all G(M;p)the geometri realisation of B(M;p). 45



We now suppose that M is onneted and onsists of at least two verties.Theorem 3.4 De�ne k = (k1 + : : :+ kn)=n and q = exp(�2�ik). Denote theCoxeter element %(g1g2 � � � gn) by q. The harateristi polynomial of q(k) isgiven by: Pq(k)(T ) = nYj=1(T � q�mjh )Proof: By remark 3.1 we know that q(k)h ommutes with r1(k); : : : ; rn(k).This implies that it is diagonal w.r.t. the basis e1; : : : ; en. If mij > 2 thena omputation shows that the diagonal entries on the plaes i and j must beequal. This implies that q(k)h is in fat a salar times the identity beause Mis onneted. Say q(k)h = � �1n, then by taking determinants we see qnh = �n,so � = �mn qh for some m. Setting ki = 0 for all i, shows in fat that � = qh. Soall eigenvalues of q(k) are of the form �mh q. Again onsidering ki = 0 �nallyproves the theorem. 2Corollary 3.1 If k 2 K 0 then %(k) is a reduible representation of B(M) i�q = �mjh for some j. Moreover, if it is reduible then the only non trivialinvariant subspae of C n is one dimensional.Proof: Beause hij 6= 0 if mij > 2 a non trivial invariant subspae of C n mustbe kept pointwise �xed by generators rj(k). In partiular the Coxeter elementq(k) must have an eigenvalue 1. This is the ase i� q = �mjh for some j. Onthe other hand, any eigenvetor of q(k) with eigenvalue 1 is kept �xed by allreetions rj(k). This proves the orollary. 2We now onsider Coxeter elements assoiated with subdiagrams of M . Let Ibe some subset of f1; : : : ; ng suh that the subdiagram M 0 of M spanned bythe verties vi, i 2 I is onneted. If #I = m, I = fi1; : : : ; img then letIq = %(gi1 � � � gim)Theorem 3.5 If k 2 K 0 is suh that %(k) is irreduible and Iq(k) has a nonzero �xed point in the subspaeCI := SpanC fei1 ; : : : ; eimg � C nthen Iq(k) is not semisimple. If Iq(k) = S +N is its Jordan deomposition ina semisimple and nilpotent part respetively, then rank(N) = 1.Proof: Beause %(k) is irreduible the �xed point set of the endomorphismIq(k) is a linear subspae of dimension n�m (indeed q(k) has no non-zero �xedpoint). But by our assumption the �xed point set intersets CI non trivially46



(and hene in a one dimensional subspae by theorem 4). Now Iq(k) restritedto the n� 1 dimensional spaeCI + Fixed pointsis semisimple. Clearly 1�Iq(k) maps C n into CI so Iq(k) itself is not semisimple.This proves the theorem. 2For real valued k 2 K 0 we now ompute the signature of the invariant Hermiteanform.Theorem 3.6 Let the matrix H be de�ned as above. The determinant of H isgiven by: det(H) = 2n nYi=1(os�k + os mi�h )Proof: Due to Coxeter [C2℄. From an exerise in Bourbaki ([B℄, Ch. V, x6,exer. 3,4) we know that: det(H) = q�n=2det(1� q)Using theorem 4 we obtain:det(H) = nYj=1(q�1=2 � q1=2�mjh ) == nYj=1(q�1=4 � q1=4�mj2h )(q�1=4 + q1=4�mj2h ) == nYj=1(q�1=4 + q1=4��mj2h )(q�1=4 + q1=4�mj2h ) == nYj=1(q�1=2 + q1=2 + �mj2h + ��mj2h ) = 2n nYj=1(os�k + osmj�h )Here we used the fat that mj +mn+1�j = h. 2Corollary 3.2 If k 2 K is real valued and 0 � kj < 1=2 for all j then H(k) is1. positive de�nite i� 0 < 1� hk � 1.2. paraboli (i.e. positive semi de�nite with one-dimensional kernel) i� 1�hk = 0.3. hyperboli (i.e. has signature (n� 1; 1)) i� 1�m2 < 1� hk < 0.47



Proof: Again from the same exerises in [B℄ one an dedue that, in aseki = k all i, the eigenvalues of H are exatly 2(os�k � os mj�h ). So in thisase the signature of H an be read o� as indiated. However, we know thatthe determinant of H does only depend on k. Hene the signature of H doesnot hange if we vary ki in suh a way that k remains onstant. This proves theorollary. 2De�nition 3.11 If (M;p) is a onneted marked diagram and k 2 K 0 is suhthat ki = 1=2� 1=pi, we all �(k) = 1� hkthe exponent of the marked diagram.By using the well known property ([B℄) that the yli group generated by theCoxeter element  of W has n orbits of length h on the roots R one dedues:�(k) = 1� 1n X�2R k�De�nition 3.12 We denote the transpose of % by %�, i.e.:%�(g) = t%(g); g 2 B(M)In partiular for any k 2 K, %�(k) is a (left) representation of B(M). LetH� 2 Mat(n;O(K 0)) be given by:H� = det(H)H�1(This is well de�ned, moreover this is just the minor matrix of H).Theorem 3.7 If k 2 K 0 is realvalued, then H�(k) is a non-trivial invariantHermitian form for the transpose %�(k) at k. Moreover, if H(k) is positivede�nite, then H�(k) is also positive de�nite. If H(k) is paraboli, then H�(k) ispositive semi-de�nite, and has an n�1 dimensional kernel. If H(k) is hyperboli,then te signature of H�(k) is (1; n� 1).Proof: Beause H(k) is at least of rank n� 1, the matrix H�(k) is at least ofrank one. Then H�(k) is learly a non-trivial Hermitian form for %�(k). Thestatements for the ellipti and hyperboli ases are lear. If H(k) is paraboli,the statement follows from the equality H(k)H�(k) = 0. 2To end this setion we onstrut the logarithmi reetion representation ofB(M). Let k 2 K 0 be suh that �(k) = 0. Then %(k) has a non-zero �xedpoint in C n unique upto salar multiples. Let �j = %(k; gj+1 � � � gn)ej for j 248



f1; : : : ; ng. Let xj 2 C be suh that � := Pj xj�j is a non-zero �xed point of%(k). De�ne endomorphisms ~r1(k); : : : ; ~rn(k) of C n+1 by~ri(k)ej = � ri(k)ej If j � nen+1 + xiei If j = n+ 1Then the map ~%(k) : B(M) ! End(C n+1 ), ~%(k; gj) := ~rj(k) extends to aright representation of B(M) alled the logarithmi reetion representation.One heks that ~%(k; g1 � � � gn)en+1 = en+1 + � and hene ~%(k; g1 � � � gn) has anilpotent part of rank one.Lemma 3.2 The only non trivial invariant subspaes of the logarithmi ree-tion representation are C � and SpanC fe1; : : : ; eng. Here � denotes a �xed vetor(unique upto a salar).Proof: The logarithmi representation restrited to A := SpanC fe1; : : : ; eng isequivalent to the reetion representation. Hene the only invariant subspaesontained in A are f0g, C � and A. If B is a non-trivial invariant subspaenot ontained in A, then B \ A is at most one dimensional. hene B is atmost two dimensional and ontains a vetor of the form en+1 + a, a 2 A. Theendomorphism 1 � ~%(k; gj) maps B into B \ C ej = f0g. Hene B must bekept pointwise �xed by the logarithmi representation. However, let the entralelement at on en+1 + a 2 B to obtain~%(k; (g1 � � � gn)h)(en+1 + a) = en+1 + a+ x�for some non zero x 2 C . This shows that every non trivial invariant subspaeis ontained in A. 23.3 The Dunkl onnetionNotations as in the previous setion. We will assume that the root system R isirreduible and of full rank in E. Let (k� j � 2 R) be aW -invariant multipliityparameter on the roots. Let � : W ! End(H) be a representation of the Coxetergroup W . Denote the sheaf of loal holomorphi setions in the trivial bundleV reg �H over V reg by A0(H). LetA1(H) = 
1(V reg)
OV reg A0(H)The Dunkl onnetion on A0(H) is given by:r(k) : A0(H)! A1(H)r(k)h =X�>0 k��� d�� 
 (1� �(s�))h49



Note that by desribing how r(k) ats on the onstant setions it is ompletelydetermined as a onnetion. The ation of W on V reg naturally extends to anation on A�(H) by ating as � on the onstant global setions.Theorem 3.8 (Dunkl) The onnetion r(k) ommutes with the W -ationand has zero urvature, i.e. is ompletely integrable.Proof: Omitted.2We will onentrate on the ase that � is the reetion representation ofW . Fortehnial reasons whih will beome lear in a moment we take the reetionrepresentation on the di�erentials �1V rather than on V itself. In partiularA�(�1V ) = 
� 

1. The reetion representation ats by�(w)d�� = d(w�)�for all w 2 W , � 2 V . Substituting this in the formula for the Dunkl onnetionyields: r(k)d�� =X�>0 k�(�; �)�� d�� 
 d��Let �1; : : : ; �n 2 E denote an orthonormal basis for V . One heks that a loalsetion ! =Pi fid��i is at for the Dunkl onnetion i�dfi +X�>0 k�!(��)(�; �i)�� d�� = 0for all i. To obtain results about at setions we need the following lemma.Lemma 3.3 For any �; � 2 V the following equality holds:X�>0 k�(�; �)(�; �) = Æ � (�; �)Here Æ = Æ(k) is given by: Æ(k) = 2nX�>0 k�Proof: The sum on the left hand side is aW -invariant bilinear symmetri formon V . Beause W ats irreduible on V it must be a onstant Æ times the form(�; �). And we dedue:Æn = nXi=1 Æ(�i; �i) =X�>0 k�( nXi=1(�; �i)�i; �) ==X�>0 k�(�; �) = 2X�>0 k�This proves the lemma. 2 50



Corollary 3.3 If ! =Pi fid��i is a at loal setion thennXi=1 ��i dfi = �Æ!Proof: Using atness of ! we getnXi=1 ��i dfi = �X�>0 k�!(��)d�� == �Xi;j fiX�>0 k�(�; �i)(�; �j)d��j = �ÆXi fid��i = �Æ!This proves the orollary. 2Denote the Euler �eld Pi ��i ��i on V reg by E .Theorem 3.9 Let ! be a at loal setion and � = �(k) = 1 � Æ(k). Thend[!(E)℄ = �! and E!(E) = �!(E).Proof: Let fi be suh that ! =Pi fid��i . Thend[!(E)℄ = d[Xi fi��i ℄ = ! +Xi ��i dfi = �!and E!(E) = EXi fi��i = !(E) +Xi;j ��jfi��j ��i == !(E) +Xi ��i dfi(E) = �!(E)This proves the theorem. 2Note that the seond statement of the theorem just states that the holomorphifuntion !(E) is homogeneous of degree �.Theorem 3.10 The C -linear operator r(k)d on OV reg has loally an (n+ 1)-dimensional kernel everywhere on V reg.Proof: First note that f is in the kernel of r(k)d i�"���� +X�>0 k��� (�; �)(�; �)��# f = 0for all �; � 2 V . We will all suh an f a solution of r(k)d. Suh a solutionis ompletely determined by its �rst order Taylor part. Hene the kernel is atmost (n+ 1)-dimensional. 51



Now assume that the multipliity parameter k is suh that � = �(k) 6= 0.Then if ! loally runs over the at setions of r(k), the funtions !(E) spanan n-dimensional subspae of the kernel of r(k)d all of homogeneous degree� 6= 0. Together with the onstants, this yields that the kernel is exatly(n + 1)-dimensional. The oeÆients of solutions depend polynomially on k,so the operator r(k)d has an (n+ 1)-dimensional kernel for all values of k. 2There is a nie way to reformulate this result in terms of onnetions. Considerthe following mapping (sheafs are over V reg):~r(k) : O �
1 ! 
1 
 (O �
1)~r(k)(f + !) = (df � !)
 1 +r(k)!One readily heks that ~r(k) is a onnetion.Theorem 3.11 The onnetion ~r(k) is ompletely integrable and regular sin-gular along the reetion planes.Proof: A loal setion f + ! is at i� ! = df and r(k)df = 0. By theprevious theorem, there are suÆiently many of suh f to onlude ompleteintegrability. That the onnetion is regular singular is lear from the expliitformula for r(k).2This result shows that the theory of regular singular integrable onnetionsapplies to solutions of r(k)d.Remark 3.3 One heks that a solution f of r(k)d also satis�es" nXi=1 �2�i +X�>0 2k��� ��# f = 0The operator between square brakets is a deformation in the parameter k ofthe eulidean Laplae operator and is sometimes denoted by L(k). If R is arystallographi root system and k takes some spei� values, L(k) turns up asthe radial part of the laplaian on the tangent spae of a Riemannian symmetrispae. The operator L(k) (R de�ned over R, k arbitrary) was studied extensivelyby E. Opdam in a paper about multivariable Bessel funtions assoiated to rootsystems [O℄.Observe that the group W ats naturally on A�(C ��1V ) and this ation om-mutes with ~r(k). This enables us to onstrut the monodromy representationfor the quotient WnV reg by analyti ontinuation of solutions of r(k)d.Take v 2 V reg ; k 2 K. Consider rd as an operator on the stalk of holomorphigerms O(k;v) (i.e. view the parameter k in r as an additional variable). Itis well known that the solutions then form a free Ok module of rank n + 1.52



Hene loal solutions of rd near v an be onsidered as a vetor bundle Fvover K. Any w 2 W indues a anonial vetor bundle isomorphism �w of Fvonto Fw(v). If S is a regular W -orbit we an identify the bundles Fv, v 2 Sby the isomorphisms �w . This yields a vetor bundle FS over K of rank n+ 1.The �bre of FS at k 2 K will be denoted by FS(k). Lifting loops in WnV regto W by the projetion together with analyti ontinuation yields a anonialanti-homomorphism� : �1(WnV reg; S) �= B(M)! End(FS):By speialising k we get a right representation �(k) on the vetor spae FS(k).We write �(k; g) for �(k)(g). To study these representations we will omputethe exponents of r(k)d along the reetion planes.Lemma 3.4 Suppose k 2 K 0. Along a plane �� = 0, the exponents of r(k)dare 0 with multipliity n and 1� 2k� with multipliity one.Proof: That these are the only two exponents ouring along �� = 0 followsby letting L(k) at on a solution of the form (��)�f for some exponent � and aholomorphi funtion f . If we take k = 0 then solutions are just polynomialsof degree at most one, i.e. exponents 0 and 1 appear with multipliity n and 1respetively. Beause the exponents 0 and 1� 2k� do not oinide if k rangesover K 0, these multipliities an not hange. 2Theorem 3.12 Let k 2 K 0 and 1 � m2 < Re(�(k)) � 1. If �(k) 6= 0 then�(k) is equivalent to the sum of the trivial representation and the reetionrepresentation %(k) of B(M) (as right representations). If �(k) = 0 then �(k)is equivalent to the logarithmi reetion representation.Proof: If �(k) 6= 0 then the representation �(k) splits in the trivial for theonstant funtion and an n-dimensional for the homogeneous degree � part.However, �(k; gj) is a omplex reetion with eigenvalue �qj , and for k = 0,�(0) splits as indiated. The (ontinuous) deformation in k an only be done inone way as we observed in the previous setion. This settles the � 6= 0 ase.If �(k) = 0 then for any r(k)-at setion ! we omputed that d[!(E)℄ = 0.Hene !(E) is a onstant for all suh setions. At any point in V reg the valueof a r(k) at setion an be presribed freely, showing that !(E) is not zero forall at setions. The exterior derivative d maps the solutions of r(k)d onto ther(k) at setions. A solution f is homogeneous of degree 0 i� (df)(E) vanishes atsome point in V reg (beause it is then onstant and equal to zero). However, atany point in V reg the �rst order part of f an be presribed freely. This impliesthat the solutions of r(k)d of homogeneous degree �(k) form an n-dimensionalsubspae for all values of k. The vetor spae of germs of homogeneous solutionsof r(k)d at v 2 V reg is denoted by Ev(k).53



The operator E � �(k) is an endomorphism of FS and its kernel is a subbundleof FS of rank n, invariant under monodromy. Denote this bundle by ES . Asendomorphism of ES , the element �(g1 � � � gn) has the harateristi polynomial:nYj=1(T � q�mjh )Speializing k in this polynomial at some �xed value, always yields a polynomialwith n distint roots. Note that bundles overK are trivial and hene there existsa global non vanishing setion f 2 �(FS) suh that�(g1 � � � gn)f = exp(2�i�(k)h )fThe vetor f(k) being unique up to a salar multiple, we may assume thatf(k) = 1 (as a onstant funtion) if �(k) = 0. Similarly we get non vanishingsetions e1; : : : ; en on K 0 in ES suh that�(gi)ej = nXl=1(ri)ljelfor all i; j. Consider the funtion ` = f � 1�(k)Note that it is in OK�fvg, beause f � 1 vanishes identially if �(k) = 0. Byontinuity in k, we onlude rd` = 0, so ` is in fat a global setion in thebundle FS . Analyti ontinuation gives:�(g1 � � � gn)` = exp(2�i�(k)=h)f � 1�(k) = exp(2�i�(k)h )`+ exp(2�i�(k)=h)� 1�(k)For �(k) = 0 we get �(k; g1 � � � gn)`(k) = `(k) + 2�ihSimilarly one shows that (ontinuing `(k) through V reg)`(k; x�) = `(k; �) + log(x)for all x 2 C � , � 2 V reg . All transformations �(gj) are omplex reetions andthe ation of �(g1 � � � gn) on ` shows in partiular that if �(k) = 01 2 SpanC fe1(k); : : : ; en(k)gThis implies that the funtions ej(k) are linearly independent (over C ) beauseup to a salar there is exatly one linear ombination of these funtions whihis monodromy invariant. This shows that �(k) is the logarithmi reetionrepresentation if �(k) = 0. 2 54



3.4 The evaluation mappingLet S be a regular W -orbit and U a simply onneted neighborhood of S inWnV reg. By identifying the dual bundles F�v , v 2 S by the duals of the iso-morphisms �w we get the dual bundle F�S . We identify �1(WnV reg ; S) andB(M) using Brieskorn's theorem and sometimes all elements of B(M) loops.Transposing � yields a (left) representation�� : B(M)! End(F�S):There is a anonial holomorphi mapping ev : K � U ! F�S into the dualbundle given by:1. For all u 2 U , k 7! ev(k; u) is a global setion in F�S .2. ev(k; u)(f) := f(u). Here f is an element of the �bre FS(k).Note that the evaluation f(u) in 2 is well de�ned and indeed de�nes a setionin F�S .The name ev stands for evaluation. This evaluation mapping extends to a multivalued holomorphi mapping ev of K � (WnV reg) into F�S . For �xed k 2 K wedenote by ev(k) the multi valued holomorphi mapping ev(k; �) of WnV reg intothe dual of the �bre FS(k).Before stating some properties of the evaluation mapping we introdue theWronskian of r(k)d. Let �1; : : : ; �n 2 V be a basis and let f0; : : : ; fn be abasis of loal solutions of r(k)d.De�nition 3.13 The Wronskian of r(k)d is de�ned up to non-zero salar mul-tipliation by: J := det0BBBBBB� f0 ��1f0 : : : ��nf0f1 ��1f1 : : : ��nf1... ... ...fn ��1fn : : : ��nfn
1CCCCCCANote that J is indeed independent of the hoie of basis up to a non zero salarmultiple.Lemma 3.5 The Wronskian of r(k)d is given by:J = Y�>0(��)�2k�55



Proof: From the de�nition of the Wronskian as a determinant one deduesthat J satis�es "�� +X�>0 2k�(�; �)�� # J = 0for all � 2 V . The proposed produt formula for J satis�es all these equations.This proves the lemma. 2By identifying WnV reg and X using the Chevalley projetion P we will hene-forth onsider ev as a multivalued holomorphi mapping on K �X .Theorem 3.13 For any k 2 K the mapping ev(k) satis�es the following prop-erties:1. It maps loally biholomorphially into an aÆne subspae A(k) of F�S(k).2. Continuing ev(k) along a loop g 2 B(M) yields ��(k; g)ev(k).3. Near a subregular point x, we an pik loal oordinates y1; : : : ; yn and er-tain linear oordinates of F�S(k) suh that near x, the evaluation mappinghas the following form:ev(k) = (y 12�kj1 ; y2; : : : ; yn; 1)Proof: Evaluation of the onstant funtion 1 at any point yields 1, provingthat it maps into an aÆne subspae of F�S(k) whih we will denote by A(k).That evaluation ev(k) is loally biholomorphi everywhere follows from the fatthat df for a solution f of r(k)d an be presribed freely at any point of V reg .This proves 1. Statement 2 is lear.Near x, there are holomorphi funtionsx1; : : : ; xn; 1suh that none of them is (loally) divisible by the disriminant D and thepullbaks by P of the following funtions form a basis of FWy(k) for y near x:D 12�kjx1; x2; : : : ; xn; 1The Wronskian takes the form (with P1; : : : ; Pn the standard oordinates onC n ): D�kjx1 � det��(D; x2; : : : ; xn)�(P1; : : : ; Pn) �+ higher order terms of DHene both x1 and det(�(D;x2;:::;xn)�(P1;:::;Pn) ) are non-vanishing near x. The followingare indeed oordinates near x:y1 = D � x( 12�kj)�11 ; y2 = x2; : : : ; yn = xn56



With respet to these oordinates, the evaluation mapping an be written asstated in 3. 2Corollary 3.4 Let y1; : : : ; yn be oordinates near x as above. Suppose thatkj = 12 � 1pj , for some pj 2 f2; 3; : : :g. The ompositionev(k) Æ (ypj1 ; y2; : : : ; yn)extends loally biholomorphially to a neighborhood of x. (It is in fat the iden-tity mapping).Proof: This is lear if we write ev(k) in the oordinates y1; : : : ; yn also. 2Our loal analysis of the evaluation mapping reveals its branhing behaviour atsubregular points of the disriminant. We use this analysis later on to studybranhing behaviour of overings at the other singular points also.Consider the subbundle ES of FS introdued in the previous setion. It is stableunder monodromy and hene we also have a monodromy representation �� onE�S . The natural restrition mappingRes(k) : F�S(k)! E�S(k)is a surjetive intertwining operator. If �(k) 6= 0 the vetor spae ES(k) isomplemented by the onstant funtions in FS(k). In this ase, restritionindues an equivalene between the annihilator of the onstant funtions andE�S(k).In setion 3.5 and 3.7 we will study restrited evaluation Rev := ResÆev insteadof evaluation itself beause the onstant funtions do not play an important rolethere. The onstants do play an important role however in the paraboli theory.Hene in setion 3.6 we will study the mapping ev .3.5 The ellipti aseThroughout this setion we assume that we have hosen the marks at the nodesof a �nite irreduible Coxeter diagram in suh a way that it beomes ellipti.This means that the exponent of the marked diagram (and hene of all its on-neted subdiagrams) is positive, or equivalently, that the invariant Hermiteanform H for the standard reetion representation is positive de�nite. The or-responding multipliity parameter k is given by ki = 1=2� 1=pi.Let � : eX ! X be the universal overing of the disriminant omplement.Identify Aut( eXjX) and B(M). We lift the mapping Rev to a single valuedmapping fev : eX ! E�S(k). Let �(p) be the smallest normal subgroup of B(M)57



ontaining gp11 ; : : : ; gpnn . Let Xu(p) := �(p)n eX. Any pj-fold loop around atype j reetion plane indues the identity automorphism of Xu(p) and it isuniversal with respet to this property. The projetion � indues a projetion�u : Xu(p) ! X . We refer to Xu(p) as the universal overing of X of loaldegree p. In the ellipti ase, this overing an be extended very niely, in thesense of the following theorem.Theorem 3.14 Suppose k 2 K is given by kj = 1=2� 1=pj for some integerspj 2 Z�2. If �(k) > 0 there exists a rami�ed overing �r : Xr(p) ! C n ,branhing along � with loal degrees pj , suh that Xu(p) = ��1r (X) and �u isjust the restrition of �r.Proof: During the proof we onstrut the ommuting diagram shown in �gure3.1, onsisting of overing maps and several funtions related to evaluation.
X C nnf0g C nXu(p) X�r (p) Xr(p)eX E�S(k)
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Figure 3.1: The ellipti ase.We prove the theorem by indution on the rank n. In rank one this is just theremark that the mapping �p : C � ! C � ; �p : z 7! zpan be extended to C (with image C ). Now assume that suh branhed overingsexist for all ellipti diagrams of rank less than n. Take a singular point x 2�nf0g. There exist loal oordinates on a neighborhood U of x suh that U \Xis biholomorphially equivalent with a produtU \X �= �m1 � U1 � : : :� UsHere eah Uj denotes the omplement of a disriminant of a paraboli irreduiblesub root system in a polydis. For example, take the diagram of A3, numberthe orresponding simple roots from left to right.If we take x the Chevalley image of a point stable exatly under the �rst twosimple reetions, then a small neighborhood would look likeU \X �= �1 � (�21n�(A2))58



where �(A2) denotes a disriminant of type A2. If x is the Chevalley image ofa point stable exatly under the �rst and third simple reetion suh a neigh-borhood would look like: U \X �= �1 ���1 ���1Where ��1 denotes the puntured dis. Beause the subdiagrams have lower rankand are of ellipti type, we onlude by indution that there exists a rami�edovering �U : Xram(p; U)! Usuh that ��1U (U \X) is universal of degree p over U \X . While fev branheswith the right orders along � it desends to a loally biholomorphi funtionevu on ��1U (U \ X). Moreover, onsidering theorem 3.13, evu extends loallybiholomorphially over the �U pre image of all sub regular points in U .The preimage of the non subregular part of U is strati�ed in strata whih are allof odimension at least two. Using the isomorphism theorem from setion 1.1we onlude that evu extends loally biholomorphially over all of Xram(p; U)to a mapping ev�r .Every overing automorphism of Xram(p; U) �xes the pre image of x 2 U .Hene the only automorphism whih �xes the mapping ev�r is the identity. Anyonneted omponent of the pre image ��1u (U) � Xu(p) is a quotient of theuniversal degree p overing ��1U (U \ X). However, beause ev�r must be on-stant on �bres of this quotient mapping, we onlude by the previous remarkthat a onneted omponent of ��1u (U) is in fat isomorphi to this universallybranhed overing. Hene all loal extensions �t together and we get a rami�edovering ��r : X�r (p) ! C nnf0g ontaining Xu(p) as a subovering. Moreover,evu extends loally biholomorphially over all of X�r (p) to a mapping ev�r .It remains to show that we an extend X�r (p) over the origin. We prove thisby using a topologial argument and again Hartog's theorem. It turns out thatev�r is globally biholomorphi on X�r (p) with image E�S(k)nf0g. Let e1; : : : ; en bea basis of ES(k), where e1; : : : ; en are hosen as in the end of setion 3.3. Lete�1; : : : ; e�n be the dual basis of E�S(k). As in de�nition 3.12 let H�(e�i ; e�j ) = H�ijbe a ��(k)-invariant hermitian form. We de�ne a ��(k)-invariant metri d onE�S(k) by: d(a; b)2 := H�(a� b; a� b)jjvjj := d(v; 0)For any � > 0 denote the ball with radius � entered at a 2 E�S(k) byBd(�; a) := fb 2 E�S(k) j d(a; b) < �gWe all a point y 2 X�r (p) �-wide if it has a neighborhood Xy suh that ev�rmaps Xy biholomorphially onto the ball Bd(�; ev�r(y)). We will see that there59



exists an � > 0 suh that every y 2 X�r (p) is (jjev�r(y)jj � �)-wide. To �nd suhan � onsider for eah N 2 f1; 2; : : :g the following set:XN = fx 2 X�r (p) j x is Æ-wide, for some Æ > jjev�r(x)jjN gThen one easily heks:1. XN is open for all N .2. If N �M then XN � XM .3. Eah XN is Aut(X�r (p)jC nnf0g) invariant and projets onto a weightedC � invariant subset of C nnf0g.4. Eah x 2 X�r (p) is ontained in some XN .Observations 1, 3 and 4 imply that the projetions of the setsXN form a overingof Pd(C n ) with open sets. The spae Pd(C n ) being ompat, this implies thatX�r (p) is already overed by �nitely many sets XN1 ; : : : ; XNm . Now 2 impliesthat X�r (p) = XN for some N 2 f1; 2; : : :g. Then we an take � = 1=N . Itfollows that if we have an inverse for ev�r on some neighborhood of a 2 E�S(k),then this loal inverse automatially extends to an inverse of ev�r on at leastBd(�jjajj; a). Hene every loal inverse an be extended holomorphially to allof E�S(k)nf0g beause this is a simply onneted set.This in turn implies that ev�r is globally injetive, beause fx 2 X�r (p) j ev�r(x) 6=0g is onneted. Now ev�r annot attain the value 0, for suppose ev�r(x) = 0,then ev�r would be onstant on the ��r �bre ontaining x, violating the injetivityof ev�r . This proves that ev�r maps X�r (p) biholomorphially onto E�S(k)nf0g.Let � be a holomorphi inverse of ev�r on E�S(k)nf0g. The omposition ��rÆ�an be extended to E�S(k) (Hartog) revealing E�S(k) as the universal branhedovering of C n branhing with the presribed indies along the subregular points.This learly proves theorem 3.14.2We repeat the important observation at the end of the proof in the next theorem.Theorem 3.15 If the marked Coxeter diagram is of ellipti type, the multival-ued mapping Rev(k) has a single valued inverse �r : E�S(k)! C n . Moreover, �ris the universally branhed overing branhing along the subregular points withthe presribed indies pj.Proof: 2We an now easily draw some remarkable onsequenes from this theorem. Thefollowing fats were already known, but proofs for orollaries 3.6 [C℄ and 3.7 [OS℄where only provided by (non-trivial) ase by ase hekings using a omputer.60



Corollary 3.5 If a marked Coxeter diagram is ellipti, the assoiated omplexreetion group is �nite. Let z be the order of the enter ofW and � the exponentof the marked diagram. Then z=� is an integer and the order of the omplexreetion group equals jW j��n.Proof: From (weighted) homogeneity of the overing �r we onlude that it is�nite (it is loally �nite at 0 2 E�S(k)). The degrees of �r are dj=�, 1 � j � n.This shows that z=� is an integer beause z = gd(d1; : : : ; dn). The order of areetion group is the produt of its degrees. Hene the order of the omplexreetion group equals jW j��n. 2Corollary 3.6 (Coxeter) A �nite reetion group assoiated with an elliptionneted marked Coxeter diagram has the following presentation:hr1; : : : ; rn j rpjj = e; j 2 f1; : : : ; ng(ri; rj)mij = (rj ; ri)mji 1 � i < j � niHere the mij denote the Coxeter integers of the diagramProof: Suh a group is just the group of automorphisms of the universallyrami�ed overing, hene isomorphi to a braid group modulo order relations. 2Corollary 3.7 (Orlik & Solomon) The primitive homogeneous invariantsQ1; : : : ; Qn 2 P [C n ℄Gof a �nite omplex reetion group G assoiated with an ellipti marked Coxeterdiagram, an be hosen in suh a way that the mapping (Q1; Q2; : : : ; Qn) is arami�ed overing of C n with branh lous �.Proof: Just note that the overing mapping �r is a weighted homogeneous poly-nomial mapping. Hene its oordinates are primitive homogeneous invariantsfor the reetion group G.23.6 The paraboli aseIn this setion we will assume that the marked diagram (M;p) is of parabolitype, i.e. � = 0 and M has rank n. This implies also that all onnetedsubdiagrams are of ellipti type. The C � -ation on X lifts to a C -ation on eXaording to the ommuting diagram in �gure 3.2.This ation is free, indeed x 7! 1 � x is just the ation of the entral element(g1g2 � � � gn)h on eX, whih is not of �nite order. Beause all subdiagrams areellipti, there exists a universally branhed overing ��r : X�r (p)! C nnf0g The61
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Figure 3.3: The paraboli ase.C -ation on eX indues a C -ation on X�r (p). As in the ellipti ase, we anlift the evaluation mapping to a loally biholomorphi mapping ev�r on X�r (p).Hene we obtain the diagram in �gure 3.3.We pik a basis e1(k); : : : ; en(k); `(k) of FS(k) as in setion 2, and denote thedual basis by e�1; : : : ; e�n; `�. (So�(k; gi)ej(k) = ej(k) + sijei(k)et.) One heks that the evaluation mapping satis�esev(k; � � x) = ev(k; x) + log� � `�for all x 2 X , � 2 C � . Hene the map ev�r satis�esev�r(� � x) = ev�r(x) + 2�i� � `�for all � 2 C , x 2 X�r (p). In partiular, the C -ation on X�r (p) is free.To prove our main result, we need a ��(k)-invariant metri on the aÆne spaeA(k) introdued in setion 3.4.Lemma 3.6 Let Ao(k) � F�S(k) denote the annihilator of the onstant fun-tions. There exists a basis v1; : : : ; vn of Ao(k) suh that:��(gi)vj = vj + sjivi; For all 1 � i; j � n62



Proof: De�ne vi as si`� +P sije�j . Then one heks that these vi lie in Ao(k)and satisfy the stated identities. Remains to prove that they are independent.By lemma 3.2 every non-trivial invariant subspae of Ao(k) ontains C `� . Thevetors vi span suh a spae and hene `� is a linear ombination of the vi. Butthe span of vi does not equal C `� and must therefore be at least n-dimensional(again by lemma 3.2). This proves that the vi are independent.2By this theorem we onlude that there exists a �� invariant hermitian form H�on Ao(k). Moreover, H� an be hosen paraboli. We now de�ne the \metri"on A(k) and the orresponding \balls" by:d(a; b)2 = H�(a� b; a� b); a; b 2 A(k)Bd(�; a) = fb 2 A(k) j d(b; a) < �g; a 2 A(k); � > 0Note that these balls atually are tubes. They are invariant under translationalong any multiple of `�.We an now state and prove the main result.Theorem 3.16 The mapping ev�r maps X�r (p) biholomorphially onto A(k).Proof: Analogous to the ellipti ase. We all a point x 2 X�r (p) �-wide if thereexists a neighborhood Yx of x suh that ev�r maps Yx biholomorphially ontoBd(�; ev�r(x)). The laim is that there exists an � > 0 suh that every point ofX�r (p) is �-wide. Consider for eah N 2 N� the following set:XN = fx 2 X�r (p) j x is Æ-wide for some Æ > 1=NgAgain these sets satisfy the following properties:1. Eah XN is an open set.2. Eah XN is C and Aut(X�r (p)jC nnf0g) invariant.3. If N �M , then XN � XM .4. Every x 2 X�r (p) is ontained in some XN .Only statement 4 needs some extra explanation. It follows by ombining thefat that ev�r is loally biholomorphi and its transformation behaviour w.r.t.the C -ation on X�r (p). Now statements 1, 2 and 4 imply that the sets XN forma overing of the ompat spae Pd(C n ) with open sets. From 3 we onludethat X�r (p) = XN for some N 2 N� . Hene every point of X�r (p) is �-wide if wetake � = 1=N . 63



Now every loal inverse of ev�r at ev�r(x) an be extended to at least the tubeBd(�; ev�r(x)). Beause A(k) is simply onneted we onlude that ev�r admits aholomorphi inverse on all of A(k). This proves the theorem. 2To dedue a presentation for the geometri realisation G(M;p) we need thefollowing lemma.Lemma 3.7 View the reetion representation %(k) of B(M;p) as a 2n di-mensional representation over R. Then the only non-trivial invariant subspaes(over R) are ontained in C � where � denotes a non-zero %(k)-�xed vetor(unique upto a omplex salar).Proof: Let U be an invariant subspae (over R), U 6= f0g. The endomorphism1 � %(k; gj) maps into U \ C ej . Suppose U is not ontained in C � then wean assume rer 2 U for some r 2 f1; : : : ; ng and some r 2 C � . Now letj 2 f1; : : : ; ng be arbitrary. Beause er is a yli vetor for %(k) (over C ) thereis a g 2 B(M;p) suh that (1� %(k; gj))%(k; g)(rer) 6= 0. But this implies thatwe may assume jej 2 U for some j 2 C � .Now for any i; j we have(1� %(k; gj))(1� %(k; gi))(jej) = jsijsjiej 2 UIf i; j are hosen in suh a way that mij > 2 and not both qi and qj equal 1,then sijsji is not a real number. This implies that C ej � U and onsequentlyU = C n . 2Corollary 3.8 The geometri realisation G(M;p) of B(M;p) has the followingpresentation:hr1; r2; : : : ; rn j rpii = e; i 2 f1; : : : ; ng(ri; rj)mij = (rj ; ri)mji ; 1 � i < j � n(r1r2 � � � rn)h=z = eiProof: The geometri realisation as a matrix-representation is equivalent to therestrition of ��(k) to Ao(k). The matrixgroup generated by ��(k) on F�S(k)is isomorphi to B(M;p) aording to the previous theorem. The kernel of thehomomorphism \restrition to Ao(k)" onsists exatly of all elements ating asa translation on A(k). The set of all ouring translation vetors in Ao(k) is adisrete abelian subgroup of Ao(k), denoted by L. The set L is learly ��(k)-invariant. Hene by the previous lemma, L is either of rank 2n, or ontainedin C `� . However L annot be of full rank, for this would imply that C nnf0g isompat (being a quotient of A(k)=L).We onlude that L must be ontained in C `� . Moreover, by onsidering the C -ation on X�r (p) one �nds L = Z2�iz `�. The kernel of the restrition is generated64



e e e4 4 4� e e e4 44� e e e3 3 34�e e e e3 3 3 4� e e ee3 3 33�e e e e3 34� e e e e e3 3 3 3 3�Table 3.1: The seven paraboli diagrams.by ��(k; g1g2 � � � gn)h=z . Hene the presentation of B(M;p) has to be extendedby one relation exatly as stated in the orollary. 2We onlude this setion by deduing a Chevalley theorem on the invariants inertain rings of theta funtions. The results are similar to those obtained byLooijenga in [L℄. Beause the paraboli ases for whih n equals two are diretlyrelated to the lassial theory of the Gauss funtion, we will restrit ourselvesto the study of the seven remaining paraboli ases, listed in table 3.1. (In thediagram the �rst vertex is indiated by a ross mark.)In eah ase, monodromy indues a transformation group C(M;p) of the (n�1)-dimensional aÆne spae A` := A(k)=C `� . This group ats disretely, oom-patly and is generated by n aÆne omplex reetions satisfying the order andbraid relations as indiated by the marked Coxeter diagram (M;p). The re-etions ��(k; g2); : : : ; ��(k; gn) have a unique simultaneous �xed point on A`whih we will denote by f . Note that f an be taken a salar multiple of e�1(mod `�). We will study this later on.Observe that H� really indues a metri on A`. Introdue the point group Pof C(M;p) as ertain isometries of A` �xing f as follows. The group P will bethe image of the homomorphismp : C(M;p)! Aut(A`); p(g) : v 7! g(v)� g(f) + fThen p(g) �xes f and p is indeed a homomorphism. We also write p for thepull bak of p to B(M) by ��(k). Note that P is generated by p(g1); : : : ; p(gn)and these transformations are again omplex reetions satisfying the order andbraid relations of (M;p).Denote the translation of A` over � 2 Ao(k)=C `� by t� and take� = f� 2 Ao(k)=C `� j t� 2 C(M;p)g65



If � 2 � then g(f + �) � f 2 � for all g 2 P . Indeed if p(go) = g for go 2 Cthen tg(f+�)�f = got�g�1o . The point group ats naturally on Ao(k)=C `� andstabilizes �. Beause C(M;p) ats disretely on A` and P ats irreduibly evenover R (only trivial P -stable aÆne subspaes) we onlude that � is either f0gor a lattie.We an now prove the following important theorem:Theorem 3.17 The group C(M;p) is the semidiret produt of its normaltranslation subgroup T� and its point group P : C(M;p) = T�P . The groupP is isomorphi to the omplex reetion group assoiated to the subdiagram ofM obtained by deleting the �rst node. Moreover � is a lattie of the form� = SpanZf��(k; g)� j g 2 B(M)gfor some speial eigenvetor � 2 Ao(k)=C `� of ��(k; g1).Proof: The subgroup of P given by hp(g2); : : : ; p(gn)i is isomorphi to thereetion group hr2(k); : : : ; rn(k)i ating on C n�1 . One omputes that in allseven paraboli ases this reetion group already ontains a omplex ree-tion r satisfying the same order and braid relations as p(g1) 2 P . Beausehr2(k); : : : ; rn(k)i �xes a positive de�nite hermitean struture on C n�1 it fol-lows that p(g1) 2 hp(g2); : : : ; p(gn)i:Indeed the relations imply an expliit expression of suh a reetion in terms ofthe hermitean struture.Now ompute p(g�11 )��(k; g1)v = v + (1� ��(k; g�11 ))f:So p(g�11 )��(k; g1) is a translation over a non zero speial eigenvetor � of��(k; g1).The statements of the theorem now follow from the remarks that p(g�11 ) 2C(M;p) and C(M;p) is generated by p(g2); : : : ; p(gn) and t(1���(k;g�11 ))f . 2Remark 3.4 It turns out that the two rystallographi groupsC(A3; 4) and C(B3; 4; 2)are isomorphi. In both ases the point group is isomorphi to B(A2; 4) and thelattie is generated by a speial eigenvetor of ��(k; g2).Remark 3.5 A omplete lassi�ation of omplex rystallographi reetiongroups an be found in an artile by Popov [P℄.66



The next step is now to introdue a ertain kind of theta funtions on A`. Letthe inverse of the evaluation mapping on A(k) be given by:� = (�1; : : : ; �n) : A(k)! C nnf0gBy using some properties of the evaluation mapping one dedues for all j inf1; : : : ; ng:1. �j(u+ x`�) = edjx�j(u); u 2 A(k); x 2 C . (dj is the jth invariant degreeof the real reetion group W ).2. �j(��(k; g)u) = �j(u) for all u 2 A(k) and g 2 B(M;p).Let � 2 FS(k) be suh that `�(�) = 1 and �(k; gj)� = � for j = 2; : : : ; n. Suha � is unique modulo the onstant funtions. Consider the entire funtion �j onA` de�ned by �j(u+ C `� ) = e�dju(�)�j(u):Using the properties of �j one heks that �j is well de�ned and satis�es:�j(��(k; g)u) = e�dj(u(�(k;g)�)�u(�))�j(u); g 2 B(M;p)In partiular �j(gu) = �j(u) for all u 2 A`; g 2 P . From these transformationformulae we see that �j is a P -invariant theta funtion on A` with respet tothe lattie �. Let us now study the general theory of suh theta funtions. Ineah of the seven paraboli ases there exists a unique ��(k)-invariant positivede�nite Hermitean struture (�; �) on Ao(k)=C `� satisfying Im(�;�) = Z: Thealternating form Im(�; �) turns out to be non-degenerate. It is well known [SD℄that there exists a basis of � over Z suh that the matrix of this alternatingform with respet to this basis takes the following form:� 0 d�d 0 �Here d is a diagonal matrix diag(t1; : : : ; tn�1) for some positive integers satisfy-ing 1 = t1 j t2 j : : : j tn�1. These integers are alled the invariant fators of thealternating form. The invariant fators are listed in table 3.2.Theorem 3.18 Suppose # is a theta funtion on A` satisfying:1. #(u+ �) = eL(u;�)#(u) for all u 2 A` and � 2 �. Here L(�; �) is an aÆnefuntion for all �.2. The funtion u 7! #(gu) transforms as stated in 1 for all g 2 P .There is a unique � : �! Z=2Z, independent of #, and a D 2 N suh that67



1. L(u; �) � D(�(u�f; �)+ �2 (�; �)+�i�(�)) (mod 2�i), for all u 2 A`; � 2 �.2. �(�+ �) � �(�) + �(�) + Im(�; �) (mod 2), for all �; � 2 �.Here f denotes the P -�xed point in A`. We all suh a # a P -stable thetafuntion of degree D.Proof: This relies heavily on the general theory of theta funtions. See forexample [SD℄.Clearly L(u; �) must be of the form (u � f; L�) + Q(�) for some real lineartransformation L of Ao(k)=C `� . By P invariane one dedues that L ommuteswith all ��(k; gj), j 2 f2; : : : ; ng. This implies that L is a (omplex) salarmultipliation. Hene there is a D 2 C suh that L(u; �) = D�(u�f; �)+Q(�).From the oyle relation for L(u; �) it follows that in fat D 2 Z.It is now general theory of theta funtions that shows that L(u; �) must be ofthe form L(u; �) � D(�(u� f; �) + �2 (�; �) + �i�(�)) (mod 2�i)for some P -invariant � : �! C =2Z satisfying the relation stated in the theorem.From the expliit form of � and (�; �) one an hek that in all seven paraboliases the funtion � is uniquely determined and takes values in Z=2Z. 2Corollary 3.9 For eah degree dj there is a Dj 2 N�1 suh that if ��(k; g)indues t� 2 C then�dj(u(�(k; g)�)� u(�)) � Dj(�(u� f; �) + �2 (�; �) + �i�(�)) (mod 2�i)for all u 2 A`.Proof: The theta funtion �j is P -stable and transform under translation over� by the exponential of the left hand side of this equality. Hene by the previoustheorem there exists a Dj as stated. 2Note that the degree of �j equals Dj . The degrees D1; : : : ; Dn are listed in table3.2.Let �D be the set of P -stable theta funtions of degree D. For all D, �D is a�nite dimensional C vetor spae. In fat it the dimension of �D equals Dn�1times the produt of the invariant fators of the alternating form Im(�; �) [SD℄.Let � = MD�0�Dthen � is a graded C algebra. The point group P ats naturally on this algebra.Note that the algebras of P -stable theta funtions are isomorphi for the twoases (A3; 4) and (B3; 4; 2).We denote the subalgebra of P -invariant theta funtions by �P .68



Theorem 3.19 For all paraboli groups exept (B3; 4; 2) the algebra �P equalsC [�1 ; : : : ; �n℄. In partiular it is isomorphi to a polynomial algebra.Proof: We do not onsider the marked diagram (B3; 4; 2) for it turns out that(A3; 4) determines the invariants in � for that ase.As oordinates of the inverse of the evaluation mapping it is lear that the �jand hene the �j are algebraially independent. If # 2 �P is of degree D thenonsider the funtion # : A(k)! C de�ned by#(u) = eDu(�)#(u+ C `� )One heks that it satis�es1. #(u+ x`�) = exD#(u) for all u 2 A(k); x 2 C .2. #(��(k; g)u) = #(u) for all g 2 B(M;p).Note that by P -invariane of # it suÆes to hek 2 for all g suh that ��(k; g)indues a translation t� of C. To hek this use orollary 3.9 and the degreesD1; : : : ; Dn as listed in the table.Using these properties it follows that the omposition #Æev(k) extends to aweighted homogeneous polynomial of degree D on C n . Hene # is a polynomialin �1; : : : ; �n. 2Remark 3.6 Similarly one an prove that the algebra of invariants of evendegree in �P related to C(B3; 4; 2) also equals C [�1 ; : : : ; �n℄. (Here the �1; : : : ; �nare the theta funtions related to the diagram (B3; 4; 2)).To end this setion I give a sketh of the method to ompute the degrees Dj .Reall that �(k; gj)` = `+xjej where the onstants xj are hosen in suh a waythat x1�(k; g2 � � � gn)e1 + x2�(k; g3 � � � gn)e2 + : : :+ xnen = 2�ihwhere the right hand side is a onstant funtion. In partiular it is the (uptoa salar) unique monodromy �xed vetor. From this we an expliitly ompute�.Take y2; : : : ; yn 2 C suh that xj + nXl=2 ylsjl = 0for all j 2 f2; : : : ; ng. Projetion of ` onto the �(k; g2); : : : ; �(k; gn) �xed vetorsalong the span of e2; : : : ; en gives� = `+ nXj=2 yjej :69



Diagram Invariant fatorsof Im(�; �) Invariant degrees (�; �)(A3; 4) and(B3; 2; 4) 1; 2 2; 3; 4 2(B3; 3; 3) 1; 6 1; 2; 3 2p3(B4; 3; 2) 1; 3; 3 1; 2; 3; 4 2p3(D4; 3) 1; 3; 3 1; 2; 2; 3 2p3(F4; 2; 3) 1; 1; 3 1; 3; 4; 6 43p3(A5; 3) 1; 1; 3; 3 2; 3; 4; 5; 6 2p3Table 3.2: Struture of the paraboli groups.Applying e�1 to 2�i=h yields that we an takef = 2�ihx1 e�1 + C `�for the ��(k; g2); : : : ; ��(k; gn) �xed vetor in A`.Consider t� with � = (1 � ��(k; g�11 ))f a generator of � as before. Then t� isindued by ��(k; gg1) for some g in hg2; : : : ; gni. By orollary 3.9 we know�dj(f(�(k; gg1)�)� f(�)) � Dj(�2 (�; �) + �i�(�)) (mod 2�i)The real part of the right hand side an be omputed from table 3.2 where (�; �)is listed for eah ase. Substituting all expliit formulas in the left hand sideand onsidering the fat that �(k; g)� = � we get:�dj 2�ihx1 (x1 + nXj=2 yjs1j) � Dj(�2 (�; �) + �i�(�)) (mod 2�i):With this result the degrees Dj an be omputed in eah ase.3.7 The hyperboli aseThroughout this setion we assume that the onneted marked diagram (M;p)is of hyperboli type. This means that if we de�ne k 2 K by kj := 1=2� 1=pj70



then �(k) sati�es 1 �m2 < �(k) < 0. Lift Rev(k) to a single valued mappingfev on eX. Then fev is a loally biholomorphi mapping satisfying:fev(x � y) = e2�i�x �fev(y); for all x 2 C ; y 2 eXby homogeneity of Rev(k). Again we de�ne an invariant Hermitian form H� onE�S(k), i.e. the signature of H� is (1; n� 1).De�nition 3.14 The set of vetors in E�S(k) on whih H� is positive is denotedby B . The unit ball in C n�1 by B. In a formula:B = fv 2 E�S(k) j H�(v; v) > 0gB = f(x1; : : : ; xn�1) 2 C n�1 j jx1j2 + : : :+ jxn�1j2 < 1gLemma 3.8 The set B is a trivial C � -bundle over B. To be preise: there is abiholomorphi mapping � : B ! C � �Bsuh that if �(v) = (x; �) then for all � 2 C � , �(�v) = (�x; �).Proof: Let �1; : : : ; �n be a basis of E�S(k) suh that:H�(�i; �j) = �Æij ; H�(�n; �n) = 1Note that if v 2 B then the �n oordinate of v (i.e. H�(v; �n)) is non-zero. Thisallows the following onstrution of � :� : B ! C � �B; � : nXj=1 j�j 7! (n; 1n ; : : : ; n�1n )One easily heks that this mapping satis�es the presumed onditions. 2Corollary 3.10 The fundamental group of B is isomorphi to Z, moreover$ : ��1Æ(exp(2�i�)� id) : C �B ! Bis a universal overing of B .Proof: Evident. 2The following theorem is fundamental for the hyperboli theory. However, be-ause the proof of it would be a little distrating at this moment, I put it in theseperate setion 3.8. 71



Theorem 3.20 In ase (M;p) is of hyperboli type, the image of the assoiatedmultivalued mapping Rev(k) is ontained in B .Proof: In setion 3.8. 2Beause eX is simply onneted, we an fator the map fev through the universalovering of B . In this way, we get a mappingfEV : eX ! C �Bsatisfying fev = $ÆfEV. Now ��(k) indues a unique group eG of transformationsof C �B and surjetive homomorphisms~� : B(M)! eG; pr : eG! ��(k;B(M))suh that for every g 2 B(M) we obtain the ommuting diagram in �gure 3.4.
eXeX C �BC �B BB? ? ?- -- -g ~�(g) ��(k; g)fEVfEV $$Figure 3.4: The eG-ation.Denoting the C -ation (y; �) 7! (y + x; �) on C � B by x � (y; �), the mappingfEV also satis�es: fEV(x � y) = �x � fEV(y); x 2 C ; y 2 eXLet �1 � � be the union of faets assoiated to non ellipti onneted subdia-grams of (M;p). In partiular 0 2 �1. Denote the universal degree p overingby �u : Xu(p)! X .Lemma 3.9 The mapping fEV desends to a loally biholomorphi mapping evuon Xu(p).Proof: The fat that Rev(k) maps into B together with theorem 3.13 impliesthat Rev(k) maps some small neighborhood in X of a subregular point in � intosome simply onneted open sub set of B . (The image annot wrap around theorigin.) This implies that fEV is invariant under ontinuation along any pj-foldloop around a type j reetion plane. Hene fEV desends to Xu(p). 272



Corollary 3.11 The homomorphism ~� projets to a homomorphism~� : B(M;p) �= Aut(Xu(p)jX)! eGThis desribes the monodromy of evu, i.e.evu(g � x) = ~�(g)evu(x)for all g 2 Aut(Xu(p)jX) and all x 2 Xu(p).Proof: 2Lemma 3.10 The overing Xu(p) an be embedded in a universally rami�edovering ��r : X�r (p) ! C nn�1. Moreover, evu extends to a loally biholomor-phi mapping ev�r on X�r (p).Proof: From the ellipti ase we know that universally rami�ed extensions existloally above any point of C nn�1. By using properties of evu we an againonlude that all these loal extensions �t together and obtain X�r (p). By asimilar argument as before, evu extends loally biholomorphially to X�r (p).2We obtained the diagram in �gure 3.5.
X C nn�1Xu(p) X�r (p)eX C �B

-? ?? --




� 6ev�revugEV
Figure 3.5: The hyperboli ase.Before stating the main theorem of this setion we investigate what happensnear a faet in �1 assoiated to a onneted sub diagram of (M;p) of parabolitype. So suppose (by renumbering) that the sub diagram spanned by the verties1; : : : ; j is onneted and of paraboli type.Lemma 3.11 There exists a basis e1; : : : ; ej ; F; f1; : : : ; fn�j�1 of ES(k) suhthat1. The vetor el is a speial eigenvetor of �(k; gl) for all l.73



2. �(k; g1g2 � � � gj)F = F +2�i � f . Here f is a non zero vetor in the C -spanof e1; : : : ; ej suh that f is �xed by all reetions �(k; g1); : : : ; �(k; gj).3. Every vetor fl is also �xed by all these j reetions.Proof: This follows from theorem 3.5 in setion 3.2. 2Pik a basis of ES(k) as indiated and let e�1; : : : ; e�j ; F �; f�1 ; : : : ; f�n�j�1 denotethe dual basis of E�S(k).Lemma 3.12 Take branhes of Rev(k) and f suh that Rev(k; u)(f) = f(u).Then ��(k; g1 � � � gj)Rev(k; u) = Rev(k; u) + 2�i � f(u)F �:In partiular f(u) 6= 0 and f(u)H�(`�;Rev(u)) 2 R.Proof: This transformation formula follows from the fat that F is the onlybasis element that transforms non trivially under this partial Coxeter element.BeauseRev(k; u) 2 B we onlude that f(u) 6= 0 for there are no ��(k; g1 � � � gj)-�xed vetors in B .Write jj�jj2 for H�(�; �). Then by monodromy invariane of H� we getjj��(k; g1 � � � gj)tRev(k; u)jj2 = jjRev(k; u)jj2for all t 2 N. Repeated appliation of the transformation formula from thelemma shows that jjF �jj2 = 0 and f(u)H�(F �;Rev(k; u)) 2 R as stated. 2Let p be a point on the faet under onsideration. Then loal monodromy nearp �xes the vetor F � on the boundary of B . To study the behaviour of Rev(k)near p we use a loal monodromy invariant distane funtion on B that measuresthe distane of a point to F �. We de�ne this distane for v 2 B by:Æ(v) = j(F �; v)j2(v; v)Note that it is onstant on the line through v. If Æ(v) ! 0 then v ! F � in theprojetive sense.Let x1; : : : ; xn be loal oordinates near p suh that the faet is desribed bythe equations xj+1 = xj+2 = : : : = xn = 0. Now onsiderx1; : : : ; xj ; y1 := xj+1; y2 := xj+2xj+1 ; : : : ; yn�j := xnxj+1as loal oordinates on the blow up of the faet. (So y1 = 0 loally de�nesthe exeptional divisor. The argument that follows does not depend on thispartiular hoie of oordinates). 74



Lemma 3.13 Eah e1; : : : ; ej and f1; : : : ; fn�j�1 extends holomorphially overthe exeptional divisor. Moreover, in the oordinates x; y we an loally writeF (x; y) = (log(y1) +  (x; y))f(x; y)for some holomorphi  .Proof: Reall that the exponent along the exeptional divisor is 0 with mul-tipliity n + 1. By general theory of onnetions with regular singularities weknow that F (x; y)� log(y1)f(x; y); e1; : : : ; ej ; f1; : : : ; fn�j�1extend holomorphially over the divisor y1 = 0. We already know that f doesnot vanish if y1 6= 0. Beause the exponent of f along the exeptional divisoris 0, we onlude by Hartog's theorem that f is even non vanishing for y1 = 0.Then we an learly write F in the indiated form. 2Theorem 3.21 Let Rev(k) and F be branhes on the loal oordinate neigh-borhood with oordinates (x; y) suh that Rev(k; x; y)(F ) = F (x; y). Then thedistane Æ(Rev(k; x; y)) tneds to 0 if y1 tends to 0. Moreover, onvergene isloally uniform w.r.t. the other oordinates.Proof: Write Rev(k; x; y) = F (x; y)F � + r(x; y). Then r extends holomorphi-ally over the divisor y1 = 0. Beause f(x; y)H�(F �; r(x; y)) 2 R and f(x; y) isnon vanishing even if y1 = 0, we onlude that H�(F �; r) is also non vanishingfor y1 = 0.Now ompute the distane (arguments (x; y) are omitted in the right hand side):Æ(Rev(k; x; y)) = jH�(F �; r)j22Re�FH�(F �; r)�+H�(r; r) == jH�(F �; r)j22Re�(log(y1) +  )fH�(F �; r)�+H�(r; r) == jH�(F �; r)j22fH�(F �; r)�log jy1j+ Re( )�+H�(r; r)Now H�(F �; r) 6= 0 so the logarithm in the denominator will ause onverge ofthis distane as stated. 2Note that onvergene is not only loally uniform, but also does not depend onthe hoie of the partiular branhes (Æ is invariant under loal monodromy).We an now prove the main theorem of this setion.75



Theorem 3.22 If every onneted proper sub diagram of (M;p) is either elliptior paraboli, then the mappingev�r : X�r (p)! C �Bis globally biholomorphi and onto.Proof: We need again a eG and C invariant \metri" on C � B. Consider thePoinar�e-Bergman metri on B �= C �nB :oshd([v℄; [w℄) = jH�(v; w)j[H�(v; v)H�(w;w)℄1=2Now extend it trivially on the C -�bres:Æ((w1; b1); (w2; b2)) = d(b1; b2)This \metri" is learly eG and C invariant. De�ne a ball (tube) w.r.t. thismetri by: BÆ(�; x) = fy 2 C �B j Æ(x; y) < �gThe proof of the similar theorem in the paraboli ase has to be altered a little.We used that Pd(C n ) is ompat, but now we possibly left out some points byexluding �1. To overome this problem we over C nn�1 in a ertain way bylosed sets. Let K1 �� K2 �� K3 �� : : :be a sequene of losed subsets of C nn�1 suh that1. Eah Kj is invariant under the weighted homogeneous C � ation.2. Eah set Kj is ontained in the interior of Kj+1.Then C �nKj is a ompat subset of Pd(C n ).Let Xj � X�r (p) be the ��r pre image of Kj . Then there exists a sequene ofpositive numbers �1 � �2 � : : : suh that any point of Xj is �j-wide (w.r.t. ev�r).Suppose  : [0; 1℄ ! C � B is suh that a loal inverse � of ev�r near (0) anbe ontinued along  upto but not inluding (1). Using �j-wideness on Xjwe onlude: For any j there is a parameter tj 2 (0; 1) suh that �Æ(t)=2Xjfor all t 2 (tj ; 1). This implies that ��rÆ�Æ onverges to a faet in �1 (i.e.every C � -stable open neighborhood of that faet ontains a tail of the urve).However, if a urve in X is suh that its ��r image tends to a faet in �1 theev�r image of the urve tends to the boundary of C �B. That is to say, the ev�rimage tends to be at an in�nite distane from any point in C �B with respetto the given metri. This is a onsequene of theorem 3.21. (It is not hard to76



see, using that onverge there is loally uniform and Cauhy's integral theorem,that this behaviour also holds on the ��r pre image of �). In partiular the ev�rimage of �Æ should tend to the boundary of C �B. But this is just the urve, whih tends to (1) 2 C �B.This ontradition shows that any loal inverse of ev�r an be ontinued through-out C �B. Hene ev�r has a single valued holomorphi inverse on C �B. Thisshows that ev�r maps X�r (p) globally biholomorphially onto C �B.2Write �=z = �d=a; d; a 2 Z+; gd(d; a) = 1Corollary 3.12 Any loal inverse of the multivalued mapping Rev(k) : X ! Bextends holomorphially to the d-fold overing of B , and to no other overing ofsmaller degree.Proof: Let � denote the inverse of ev�r . The map ��rÆ� : C � B ! C nn�1 isglobally holomorphi on C � B and the lift of a loal inverse of Rev(k). Nowby the relation ev�r(x � y) = �x � ev�r(y); x 2 C ; y 2 X�r (p)and the fat that for a generi point y 2 X�r (p) we have��r (x1 � y) = ��r (x2 � y) , x1 � x2 2 Z=zwe onlude that ��rÆ� is invariant under the ation of t 2 Z=z i� t is a multipleof d=z. Hene by dividing out the ation of dZ=z on C � B, the map ��rÆ�desends to a globally holomorphi extension of a loal inverse of Rev(k) on thed-fold overing of B . It is lear that the degree d is minimal in this sense. 2Corollary 3.13 If all onneted sub diagrams of (M;p) are either ellipti orparaboli, then the geometri realisation G(M;p) of B(M;p) has the followingpresentation:hr1; : : : ; rn j rpii = e; i 2 f1; : : : ; ng(ri; rj)mij = (rj ; ri)mji ; 1 � i < j � n(r1r2 � � � rn)ha=z = eiProof: The biholomorphi equivalene of X�r (p) and C �B shows thatB(M;p)=N �= G(M;p)where N denotes the ~� pre image of the kernel ofpr : eG! ��(k;B(M)) �= G(M;p):This kernel onsists exatly of translations of C � B in the �rst fator over anintegral multiple of 1=z. Relating both C -ations on X�r (p) and C � B by the77



transformation formula for ev�r from the proof of orollary 3.12, we onludethat N is generated by (g1g2 � � � gn)ha=z. The orollary follows. 2We onlude this setion by formulating a Chevalley theorem for hyperbolireetion groups.A holomorphi funtion f : C �B ! C with the propertyf(x+ t�z ; b) = e2�itf(x; b); for all t 2 C and (x; b) 2 C �Ban be onsidered as a global setion in a line bundle L overB. The group eG atsnaturally on L and the kernel of the projetion of eG onto G(M;p) ats trivially.Hene L is a G(M;p)-homogeneous bundle. Consider the graded algebraA :=Mn�0�(B;L
n)and let AG denote the sub algebra of G(M;p)-invariant elements.Theorem 3.23 The algebra AG of invariant setions is isomorphi to a poly-nomial algebra C [�1 ; : : : ; �n℄.Proof: Let ev : C nn�1 ! C �B be a lifting of Rev(k). Let � = (�1; : : : ; �n) :C � B ! C nn�1 be the inverse of ev. Clearly the oordinates �1; : : : ; �nare algebraially independent over C . Using homogeneity of the evaluationmapping one dedues that �j is a global invariant setion in L
(dj=z). Nowlet f 2 �(B;L
n) be an invariant setion (as a funtion on C � B). Theomposition fÆev is invariant under monodromy and weighted homogeneous ofdegree n. Hene this omposition extends to a polynomial on C n . This impliesthat f is a polynomial in �1; : : : ; �n. 2A well known result of Selberg [Se, lemma 8℄ implies that G(M;p) has a normalsubgroup � of �nite index that ats freely on the omplex ball B. On thesmooth variety �nB one an introdue a line bundle L as above, homogeneouswith respet to the �nite group G(M;p)=� generated by reetions. Then onean prove a Chevalley like theorem on the invariant setions in the algebragenerated by �(�nB;L). This is similar to the result of Milnor in [N℄ on theomplex dis (one dimensional hyperboli spae).3.8 A proof of theorem 3.20In this setion we present a proof of theorem 3.20. Let e1; : : : ; en be a basis of ESas in setion 3.3. Denote the dual setions in E�S by e�j . De�ning H�(e�i ; e�j ) :=H�ij (as in de�nition 3.12) provides a hermitean struture on the subbundle of78



E�S over the real valued multipliity funtions K 0R. To prove theorem 3.20 itsuÆes to show that H�(Rev(k);Rev(k)) > 0on X for hyperboli k.Now let � : C 2 ! V be an injetive linear mapping suh that �(C 2nf0g) intersetsevery reetion plane only in sub regular points. (In partiular, the � image is notontained in any reetion plane.) By Chevalley projetion we get a weightedhomogeneous mapping �P := PÆ� into C n suh that its image intersets �nf0gonly in subregular points. Let a1; : : : ; am be the lines in C 2 whih �P maps into�. De�ne a real valued funtion � on K 0R� C 2nfa1; : : : ; amg by:�(k; x) := H�(Rev(k; �P (x));Rev(k; �P (x)))Note that by monodromy invariane ofH� this de�nes a single valued ontinuousfuntion. By the haraterization in theorem 3.13 we onlude that � extendsto a ontinuous funtion (also alled �) on K 0R� C 2 . Also note that �(k; �) ishomogeneous (of degree �(k)) for eah k.We now investigate if this � an take on negative values. First observe that�(k; x) > 0 if �(k) � 0. De�ne N by:N := f(k; x) 2 K 0R� C 2 j �(k; x) � 0g(The set where � takes on non positive values.) Then N is losed. Beause N isinvariant under salar multipliation in the seond fator and P(C 2 ) is ompat,we onlude that the projetion NK of N on K 0R along C 2 is also losed.Now suppose k 2 �NK . Then �(k; �) � 0 and �(k; xo) = 0 for some xo 2C 2 . Suppose that �(k) > 1 � m2. By a previous remark we neessarily have�(k) < 0. Beause Rev(k) is loally biholomorphi on X and �P (C 2nf0g) is notontained in a single (weighted) C � -orbit, we onlude that �(k; x) = 0 impliesthat x 2 a1 [ : : : [ am. Hene �(k; �) vanishes along some line, a1 say.By theorem 3.13 we know that at a non zero point xo in a1 we an loally splitRevP := Rev(k; �P (�)) in a singular and a holomorphi part:RevP = Revs +RevhIn partiular1. H�(Revs;Revh) = 02. Revh is holomorphi in a neighborhood of xo 2 a1.3. If �P (xo) lies on a type j reetion plane, then Revs is a speial eigenvetorof ��(k; gj) on E�S(k) (if non zero).4. limx!xo Revs(x) = 0 79
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Chapter 4Root systems and varieties
4.1 IntrodutionIn hapter 3 a hypergeometri system related to a normalized root system Rwas introdued. It is a loal system or, in Deligne's terminology, a funtionof Nilsson lass on the omplement of the disriminant of R. This systemdepends on a multipliity parameter k and some onditions on this parameterwere introdued that will assure that the hypergeometri system has a disretemonodromy group. One of these onditions is that all proper paraboli rootsubsystems of R with the restrited multipliity parameter should have a non-negative exponent.Studying [DM℄ shows that this ondition is ertainly not neessary in general,though it marks an important border in the theory. One should ompare thiswith the theory of real hyperboli reetion groups that at disretely and witho�nite volume on real hyperboli spae. There is a onsiderable di�erene ine�ort needed to lassify suh groups with at most paraboli subgroups (as in[H℄) and the general ase [V℄.The presented work is mainly onerned with onstrutions of varieties anddesribing their properties. First a \Cremona" variety of a restrited Coxeterarrangement is introdued. Then we generalize the appearane of GeometriInvariant Theory for the root system An, present in the work of Deligne andMostow [DM℄, to arbitrary root systems. This will result in a better under-standing of hypergeometri systems assoiated to root systems with a properroot subsystem of hyperboli type.Unfortunately, there remain some questions in the \invariant theory" for ar-bitrary root systems. Therefore the �nal main results are still onjetural innature. 82



The main onjeture of this hapter an be formulated as follows. Let k be amultipliity parameter on an irreduible root system R suh thatk� = 12 � 1p�for p� 2 N�2 and � 2 R.Conjeture 4.1 Suppose that �(R; k) 2 (1�m2; 0) where m2 denotes the se-ond smallest exponent of R, i.e. �(R; k) is of hyperboli type. Suppose moreoverthat for any irreduible paraboli root subsystem R0 � R of rank rk(R)� 1 suhthat �(R0; k) < 0 the following integrality ondition holds:�"R0=�(R0; k) 2 N�1 :Here "R0 2 f1; 2g and it equals 2 exatly if W (R) ontains an element w suhthat �w is a reetion �xing R0. Then the monodromy group of the hypergeo-metri system ES(k) (f. setion 3.3) is disrete.This results in the tables of hapter 5.4.2 Coxeter arrangementsIn this setion we introdue the notion of a Coxeter arrangement. Let R be anormalized irreduible root system of full rank in an n-dimensional Eulideanspae (E; (�; �)). De�ne V := C 
E and extend (�; �) bilinearly to V . For a subsetU � E we de�ne VU := spanC (U) and V U := V ?U . In partiular V = VU � V U .A root system R0 � R is alled paraboli if R0 = VR0\R. For R0 � R a paraboliroot subsystem we de�ne:R(R0; R) := fS � R j R0 � S and S is paraboligS(R0; R) := fS 2 R(R0; R) j rk(S) = rk(R0) + 1gIf R0 is irreduible we de�neRo(R0; R) := fS 2 R(R0; R) j S is irreduiblegSo(R0; R) := fS 2 S(R0; R) j S is irreduiblegN(R0; R) := #So(R0; R)Example: The root system of type E8 ontains D5 as an irreduible paraboliroot subsystem. In this ase So(D5; E8) ontains four systems of type E6 andthree of type D6. Therefore N(D5; E8) is equal to seven.83



Fix a root subsystem R0 2 Ro(;; R) suh that R0 6= ;. For every � 2 RnR0the linear spae �? \ V R0 is of odimension one in V R0 . Two suh roots anhave the same orthoplement in V R0 even if they are linearly independent. Take� 2 RnR0 and onsider the setf� 2 R j �? � �? \ V R0g:This is a paraboli root system of rank rk(R0) + 1 ontaining R0. It is eitherirreduible or of the form R0 [ f��; �g. All roots � for whih this system isreduible form a subset (R0)?? of (R0)?. In fat (R0)?? is a (not neessarilyparaboli) root subsystem of R. For example if R = Bn and R0 = Bm for somem � n� 4 then (R0)?? is of type Dn�m.The hyperplanes �? \ V R0 for � 2 RnR0 are exatly indexed by S(R0; R).De�nition 4.1 The spae V R0 strati�ed by the intersetion struture of all hy-perplanes V S, S 2 S(R0; R) is alled a restrited Coxeter arrangement [OT℄.Let us study the intersetion struture of all hyperplanes. Take inlusion as apartial ordering on R(R0; R).Lemma 4.1 In R(R0; R) any two elements S; S0 have a least upper bound S_S0and a greatest lower bound S ^ S0.Proof: Let S; S0 2 R(R0; R) then learly (VS + VS0) \ R is a paraboli rootsubsystem ontaining both S and S0. Moreover any upper bound for S and S0must ontain (VS + VS0) \R beause it is paraboli. Beause R(R0; R) is �niteS and S0 will also have a greatest lower bound.2Lemma 4.2 If S 2 R(R0; R) then T 7! T _ S de�nes a mapS(R0; R)nS(R0; S)! S(S;R0):Moreover, this map is onto but not neessarily injetive.Proof: If T 2 S(R0; R)nS(R0; S) then indeed rk(T _ S) = rk(S) + 1. IfS0 2 S(S;R) and � 2 S0nS then T := (VR0 + C�) \ R is an element ofS(R0; R)nS(R0; S) and S0 = T _ S. Take as an example R = B4, R0 = A1,S = B2. Then one heks that this map is not injetive.2Corollary 4.1 Any element of R(R0; R) is the least upper bound of a subset ofS(R0; R).Proof: Indution on the rank. If S0 2 R(R0; R), S0 6= R0 then S0 ontains aparaboli root subsystem S of orank one in S0. By indution and lemma 4.2we �nd a subset of S(R0; R) for whih S0 is the least upper bound. 284



Corollary 4.2 The set of all intersetions of hyperplanes V S in V R0 , S 2S(R0; R), partially ordered by reversed inlusion is isomorphi to R(R0; R) (aspartially ordered sets).Proof: This follows from orollary 4.1 and the fat that V S \ V S0 = V S_S0 . 2The hyperplanes V S , S 2 So(R0; R) play a speial role in the next setion. Toprove some properties of the intersetion struture of these hyperplanes we needthe following lemma.Lemma 4.3 If a root subsystem S � R is irreduible and A � VS is a properlinear subspae, then S � VSnA.Proof: If � 2 A\ S then SnA is invariant under reetion in �. Moreover if �is not perpendiular to SnA then it is ontained in VSnA. Hene VS = VSnA�V 0with V 0 = SpanC f� 2 S j � ? SnAg. By irreduibility of S we have V 0 = f0g.2Lemma 4.4 Lemma 4.1, lemma 4.2, orollary 4.1 and orollary 4.2 still holdif one replaes R by Ro and S by So.Proof: If S; S0 2 Ro(R0; R) then S \ S0 6= ; and hene S _ S0 is irreduibleproving lemma 4.1. If S 2 Ro(R0; R) and S0 2 So(S;R) then S0nS is notperpendiular to R0 by lemma 4.3 and the fat that R0 � S0. Hene for � 2 S0nSthe paraboli system (VR0+C�)\R is irreduible proving lemma 4.2. Corollary4.1 follows from the remark that an irreduible paraboli root system ontainsan irreduible paraboli root subsystem of orank one. Corollary 4.2 is thenlear. 2Remark 4.1 If S; S0 2 Ro(R0; R) then the greatest lower bound of S and S0 inR(R0; R) need not be irreduible. The irreduible omponent ontaining R0 isthe greatest lower bound in Ro(R0; R). So the exat meaning of S ^ S0 dependson the ontext.For S 2 R(R0; R) we denote the omplement of all V S0 in V S , S0 2 S(S;R), byHS(R) or HS . Likewise for S 2 Ro(R0; R) we denote the omplement of all V S0in V S , S0 2 So(S;R) by HSo (R) or HSo .Let the subgroupW (R0; R) ofW (R) be de�ned as the set of elements w 2W (R)suh that wjVR0 = �idVR0 .Lemma 4.5 The group W (R0; R) is generated by reetions keeping R0 point-wise �xed and at most one element w� 2 W (R) suh that w�(v) = �v for allv 2 VR0 . 85



Let w� 2 W (R0; R) be any element suh that w�(v) = �v for all v 2 VR0 (ifsuh an element exists). It is well known that the group of elements �xing R0pointwise is generated by reetions. Take w 2 W (R0; R) and suppose thatw(v) = �v for all v 2 VR0 . Then ww� �xes R0 pointwise. Hene w = ww� �w�1�so w is a produt of reetions �xing R0 and w�1� . This proves the lemma. 2Note that V R0 is stable under W (R0; R). Therefore the following de�nition of aW (R0; R)-ation on V R0 might be unexpeted.De�nition 4.2 De�ne a W (R0; R)-ation on V R0 byw:v = � w(v) if w �xes R0�w(v) otherwisefor any w 2 W (R0; R) and v 2 V R0 .In setion 4.5 it will beome lear why this is a natural ation for our purposes.Lemma 4.6 If R is not of type Dn (n odd) nor of type E6 then for any w 2W (R0; R) there exists a ~w 2 W (R) �xing R0 suh that w:v = ~w(v) for allv 2 V R0 . In this ase W (R0; R) ats freely on HR0 .Proof: If R is not of type Dn (n odd) or E6 then either w(v) = v for allw 2 W (R0; R) and v 2 VR0 or �1 2 W (R0; R). In the latter ase one an take~w = �w. Now the group of elements �xing R0 ats freely on HR0 . 2Lemma 4.7 If R is of type E6 and w 2 W (R0; E6), v 2 HR0 are suh thatw:v = v then the �xed points of w on V R0 (with respet to the dot ation) forma linear spae of odimension at least two.Proof: If w 2W (R0; E6) �xes a linear subspae of V R0 of odimension one theneither w or �w is a reetion. In the �rst ase w has no �xed points on HR0 byde�nition. If �w would be a reetion then w �xes a one dimensional faet ofE6 in V R0 . Hene �1 would be an element of the stabilizer of this faet. Nowsuh a stabilizer is the reetion group of a root system of one of the followingtypes: D5, A1 �A4, A2 �A2 �A1 or A5. In partiular �1 is not an element ofsuh a stabilizer and hene �w an not be a reetion. 2Corollary 4.3 If R0 � E6 is of rank four thenW (R0; R) ats freely on HR0(E6).Proof: A non trivial linear subspae in V R0 has orank one. 2Remark 4.2 Unfortunately an analogue of lemma 4.7 does not hold if R is oftype Dn (n odd). Consider R0 of type Am, m � n�2. Then the longest element86



in Dn�1 � Am �xes a subspae of HAm of odimension one that is not ontainedin any of the spaes HS, S 2 S(Am; Dn).We exlude the possibility for R to be of type Dn (n odd) in the rest of thishapter. (This is really not a bad restrition beause these ases are essentiallyovered by type Bn).4.3 The Cremona oneIn this setion R has rank n and is not of type Dn (n odd) and R0 is again a�xed non-empty paraboli irreduible root subsystem of R. Certain varietiesassoiated to Coxeter arrangements are onstruted. We use hypergeometrifuntions assoiated to R to study rami�ed overings of suh varieties moduloa W (R0; R) ation.For all S 2 So(R0; R) let �S 2 E be a vetor in V R0\VS normalized by (�S ; �S) =2. All vetors �S together span V R0 beause R is the least upper bound forSo(R0; R). The linear form (�; �S) on V R0 is denoted as ��S . Let yS , S 2 So(R0; R)be oordinates on CN(R0 ;R). De�ne a map R0;R : HR0o ! CN(R0 ;R) by = R0;R : v 7! ( 1(v; �S) )S2So(R0;R):Note that  is a smooth injetive homogeneous map of degree �1. De�ne�o � V R0 � CN(R0 ;R) by�o := f(v; y) j v 2 HR0o and (v) = �y for some � 2 C �g:Then �o is C � -invariant in both fators separately. Let � � V R0 � CN(R0 ;R) bethe topologial losure of �o. For a set Y � V R0 we de�ne a set�(Y ) := fy 2 CN(R0 ;R) j (v; y) 2 � for some v 2 Y g:Lemma 4.8 For every set Y � V R0 the set �(Y ) is C -invariant. If moreoverC Y is losed then �(Y nf0g) is also losed. In partiular �(fyg) = �(fC �yg) islosed for all y 2 V R0 .Proof: Left to the reader. 2Now �(f0g) is exatly the losure of (HR0o ) in CN(R0 ;R). We denote this losureby Cone(R0; R) and all it the Cremona one of the arrangement of R0 in R.Remark 4.3 In this way � an be viewed as a birational map between P(V R0)and P(Cone(R0; R)). 87



Example: If R = An and R0 = Am for some 1 � m < n then So(Am; An)ontains exatly n�m root systems of type Am+1. In this ase Cone(Am; An)equals C n�m . More generally Cone(R0; R) = CN(R0 ;R) exatly if N(R0; R) =rk(R)� rk(R0).Note that �(HRo ) = �(f0g) equals Cone(R0; R) (by de�nition). More generallywe have the following.Theorem 4.1 For S 2 Ro(R0; R)nfR0g de�ne �S := �(HSo ) and take �R0 :=f0g. Take S; S0 2 Ro(R0; R) suh that S 6= R0. Then for any v 2 HSo we have�(fvg) = �S and as a variety �S is isomorphi to Cone(R0; S). The intersetion�S \ �S0 exatly equals �S^S0 (irreduible greatest lower bound).Proof: Take v 2 HSo . Let U1 � HSo be a neighborhood of v suh that alsoU1 � HSo . Let U2 � VS \ V R0 be a neighborhood of 0 suh that U2 is ompat.Let " 2 C � be small and u1 2 U1, u2 2 U2 suh that (u2; �T ) 6= 0 for allT 2 Ro(R0; S), i.e. u2 2 HR0o (S). Then (u1 + "u2; ("�1u1 + u2)) 2 �o. Theoordinate yT of ("�1u1 + u2), T 2 So(R0; R), is given by:yT = 8>><>>: 1(u2; �T ) if T 2 So(R0; S)"(u1; �T ) + "(u2; �T ) otherwiseNow let " tend to 0. Then the oordinates yT for T=2So(R0; S) tend to 0 uniformlyin u1; u2 while those for T 2 So(R0; S) are uniformly bounded below. This showsthat if y 2 �(fvg) then its oordinate yT an be non-zero only if T 2 So(R0; S).On the other hand if y 2 Cone(R0; R) and all oordinates yT are zero for T 2So(R0; R)nSo(R0; S) then it is not hard to hek that y is ontained in the losureof f( 1(u2; �T ) )T2So(R0;S) j u2 2 HR0o (S)gembedded in CN(R0 ;R). So �S is isomorphi to Cone(R0; S) and �S \�S0 equals�S^S0 . 2For S 2 Ro(R0; R) we de�ne GS as the omplement of all �S0 in �S , S0 2Ro(R0; S)nfSg. It is the R0;S-image of HR0o (S) embedded in Cone(R0; R).Theorem 4.2 Suppose y 2 GS for S 2 Ro(R0; R) and let m = rk(S)� rk(R0),i.e. m = dim(�S). Then y has a neighborhood in Cone(R0; R) whih is isomor-phi to a produt �m � (�N(S;R) \ Cone(S;R))where � � C denotes the unit dis. In this neighborhood GS orresponds to�m �f0g. In partiular GS is smoothly embedded in Cone(R0; R) if and only ifN(S;R) equals rk (R)� rk(S). 88



Proof: Fix v1 2 HSo and v2 2 HR0o (S). Let U2 � HR0o (S) be a neighborhood ofv2 and Æ > 0 suh that j(u; �T )j � Æ�1j(v1; �T )jfor all u 2 U and T 2 So(R0; R)nSo(R0; S).The following formulas are inspired by those for yT above. Take (u; x) 2U � (Æ�N(S;R) \ Cone(S;R)) and de�ne the point y(u; x) 2 CN(R0 ;R) by itsoordinates:yT (u; x) := 8>><>>: 1(u; �T ) if T 2 So(R0; S)xT_S(v1; �T ) + xT_S(u; �T ) otherwise ; T 2 So(R0; R)Then one an hek that y(u; x) 2 Cone(R0; R). Indeed if we take x 2 Cone(S;R)given by xT_S := (v1; �T )"(u1; �T )for T 2 So(R0; R)nSo(R0; S) and some u1 2 HSo (this x is well de�ned) theny(u; x) is just ("�1u1 + u). The map (u; x) 7! y(u; x) is biholomorphi onU � (Æ�N(S;R) \ Cone(S;R)). Moreover, y(u; x) 2 �(HSo ) preisely if x = 0.Reall that N(S;R) = rk(R)� rk(S) implies Cone(S;R) = CN(S;R) . If N(S;R)is greater however then 0 is a singular point of Cone(S;R). The theoremfollows.2If w 2 W (R0; R) then w:�S = �(w; S)�w:S for some �(w; S) 2 f�1; 1g. De�nea W (R0; R)-ation on CN(R0 ;R) by:W (R0; R) 3 w�1 : (yS)S2So(R0;R) 7! (�(w; S)yw:S)S2So(R0;R)So W (R0; R) ats by sign hanges and permutations of the oordinates. Theimportant property of this ation is that it makes  a W (R0; R)-equivariantmap. Hene � is stable under the diagonalW (R0; R)-ation on V R0 � CN(R0 ;R).In partiular the ation on CN(R0 ;R) restrits to an ation on Cone(R0; R). Inall ases exept possibly if R is of type E6 this ation will be free on (HR0)(lemma 4.6) and we all this set the regular part of Cone(R0; R).Reall that GS has odimension one in Cone(R0; R) preisely if rk(S) = n � 1.In this ase GS is smoothly embedded.Theorem 4.3 Suppose S 2 Ro(R0; R) has rank n�1. An element w 2W (R0; R)ating non trivially �xes �S pointwise if and only if w ats as a reetion on V R0�xing VS (by the dot ation). In partiular it is an involution on Cone(R0; R).Proof: By invariane of � and theorem 4.1 we onlude that V S and hene VS\V R0 are stable under w. Now GS orresponds to HR0(S) by the w-equivariant89



map R0;S . In partiular GS is pointwise �xed if and only if VS\V R0 is pointwise�xed. Beause w is non-trivial it must at as a reetion.2Next we study the roots in (R0)?? and the �xed point sets on Cone(R0; R) ofthe orresponding reetions. If � 2 (R0)?? let �� be the set of �xed points onCone(R0; R) of the reetion s� with root �.Lemma 4.9 Suppose � 2 (R0)?? and S 2 Ro(R0; R). The set �� intersets GSif and only if S is stable under the reetion s�.Proof: Clearly W (R0; R) permutes the sets GS0 , S0 2 Ro(R0; R). In partiularif s� has a �xed point on GS then GS is stable under s�. By invariane of �this implies that HSo and hene S is s�-stable. If � ? S then �S is pointwise�xed by s�. If � 2 S then s� has a �xed point on HR0o (S) and hene on GS(essentially the R0;S-image of the former set). 2For an arbitrary olletion of suh reetions the following holds.Theorem 4.4 Let A � (R0)?? and S 2 Ro(R0; R). The reetions s�, � 2 Ahave a ommon �xed point on GS if and only if the following onditions aresatis�ed.1. The root system S is stable under every reetion s�, � 2 A.2. The root system R0 is an orthogonal omponent of the smallest element inR(R0; R) ontaining A \ S.Proof: Condition one states that every s� has a �xed point on GS by theprevious lemma. Let T 2 R(R0; R) be the smallest element ontaining A \ S.Let To be the irreduible omponent of T ontaining R0. Clearly To 2 Ro(R0; S).Then the ommon �xed points of s�, � 2 A \ S on V R0 are ontained in V To .Moreover HR0o (S) ontains ommon �xed points if and only if To = R0. Now�xed points on GS orrespond to �xed points on HR0o (S). The theorem follows.2In the theory of groups generated by reetions of some vetor spae it is wellknown that the stabilizer of any point is again generated by reetions. Thisfails in general for the ation of W (R0; R) on Cone(R0; R).Theorem 4.5 Suppose S 2 Ro(R0; R) and let y 2 GS. Suppose the pair (R0; R)is not any of the following: (A1; Ap) with p � 3 odd, (Ap; Dq) with p � q � 2,(Aj ; E6) with j 2 f1; 2; 3g. Then the stabilizer of y in W (R0; R) is the diretprodut of W (S;R) and the subgroup of W (S) generated by all reetions �xingR0 and y.Proof: Let w 2 W (R0; R) stabilize y 2 GS . Then S is w-stable. Let " 2 f�1; 1gbe suh that w(v) = "v for all v 2 VR0 . Then "w(v) = v for all v 2 VR0 and90



some non-zero v 2 HR0o (S) \ E. Let C be a hamber of S in VS \ E suhthat C intersets the �xed points of "w in a faet of highest possible dimension.Beause "w(C) is again a hamber and "w(C)\C 6= ; there is a g 2 W (S) suhthat "gw(C) = C. Moreover every �xed point of "w on VS is �xed by g. Inpartiular g is a produt of reetions in W (S) �xing R0 and y.The transformation "gw indues a diagram automorphism of S. If S admits nonon-trivial diagram automorphisms then gw 2W (S;R).Remains to onsider the ases where S is of type Ap, Dq or E6 with a non-trivialdiagram automorphism. In these ases the automorphism is an involution andthe roots that are �xed form a root subsystem of type Adp=2e1 , Dq�1 and D4respetively. This restrits the possibilities to (A1; Ap), (Ap; Dq), (Dp; Dq),(A1;2;3; E6) and (D4; E6). The ondition that the involution should have �xedpoints in HR0o (S) and some expliit omputations yield the list stated in thetheorem. 2In the remainder of this setion we will always assume that the pair (R0; R) isnone of those listed in theorem 4.5. In partiular this implies that W (R0; R) atsfreely on HR0 as the only possible exeptions would be (Aj ; E6), j 2 f1; 2; 3g.To study the struture of Cone(R0; R) modulo theW (R0; R)-ation we introduea funtion of Nilsson lass on the regular part (HR0) of Cone(R0; R) related tothe hypergeometri funtion of the root system R.Without loss of generality we an assume that R0 is generated by the n�m sim-ple roots �1; : : : ; �n�m 2 R for somem � 1. Let v be a regular point in E+ withorbit W (R)v. Then the hypergeometri system EW (R)v(k) has a m-dimensionalsubspae of vetors kept �xed by the reetions �(k; g1); : : : ; �(k; gn�m). More-over, any germ omponent in Ev(k) of suh a �xed vetor will extend holomor-phially over any point in the spae HR0 � V . Let x 2 HR0 \E. By restritionwe get a m-dimensional vetorspae Cx(k) of germs of multivalued funtions onHR0 at the point x. Reall that for a multipliity parameter k on R the exponentof R is de�ned as �(R; k) := 1� 1n X�2R k� 2 Z[k�℄:We will need the following remarkable equality between exponents of rootsystems whih plays a ruial role in the sequel.Theorem 4.6 For any irreduible root system R and any paraboli irreduibleroot subsystem R0 the following equality holds:XS2So(R0;R)(�(S; k)� �(R0; k)) = �(R; k)� �(R0; k)Proof: Unfortunately the only proof I know at the moment is by an elaboratease by ase veri�ation using tables of the positive roots for all root systemsR. 2 91



To obtain a Nilsson lass funtion on (HR0) we want to use the map  to pushforward the system Cx(k) on HR0 . However, it turns out to be more onvenientto push forward a slightly altered system on HR0 in order to obtain nie loalproperties on (HR0). We obtain this altered system Caltx (k) by tensoring Cx(k)with the one dimensional spae spanned by a germ of the multivalued funtionYS2So(R0;R)(��S)�(R0;k)��(S;k)at x 2 HR0 . The following lemma states some important properties of thissystem.Lemma 4.10 1. Any germ in Caltx (k) is homogeneous of degree �(R0; k).2. For any w 2W (R0; R) there is a anonial isomorphism between the vetorspaes Caltx (k) and Caltwx(k). (Compare with the spaes Ev(k)).3. For � 2 (R0)?? the system Caltx (k) has exponents 0 and 1 � 2k� withmultipliities m� 1 and 1 respetively along �? \ V R0 .4. Suppose S 2 Ro(R0; R) and rk (S) = n � 1. Then the loal exponentsalong HS are �(R0; k) and �(R0; k)� �(S; k) with multipliities m� 1 and1 respetively.Proof: Clearly a germ in Caltx (k) is homogeneous of degree�(R; k) + XS2So(R0;R)(�(R0; k)� �(S; k)):Property 1 follows by using theorem 4.6. Translation of a germ in Caltx (k) towx 2 HR0 yields a germ in Caltwx(k) by the properties of the system Ev(k). Thisproves 2. Let j > n � m be suh that �j 2 V R0 . Then �(k; gj) ommuteswith all �(k; gi), i � n � m, and hene any speial eigenvetor of �(k; gj) is�(k; gi)-invariant for i � n � m. This proves 3. Suppose S is as in 4. Wemay assume that S is generated by the simple roots �1; : : : ;�j ; : : : ; �n for somej > n �m. The element �(k; g1 � � � bgj � � � gn)h(S), h(S) the Coxeter number ofW (S), ommutes with all �(k; gi), i � n � m. Hene an eigenvetor of thiselement with eigenvalue one (unique upto salar multiples) is kept �xed by all�(k; gi), i � n�m. So the exponents along HS are�+ XT2So(R0;S)(�(R0; k)� �(T; k)); � 2 f�(S; k); 0gwith multipliities m � 1 (� = �(S; k)) and 1 (� = 0). Property 4 follows byapplying theorem 4.6. 2 92



Now push forward the system Caltx (k) by  to obtain the spae Cone(x) (k) of germsat y := (x) 2 (HR0). For this system one has the following (ompare withthe previous lemma).Lemma 4.11 1. Any germ in Coney (k) is homogeneous of degree ��(R0; k).2. For w 2 W (R0; R) there is a anonial isomorphism of the vetor spaeConey (k) onto Conew:y (k).3. Let � 2 (R0)??. The exponents of Coney (k) along the �xed points �� of thereetion s� are 0 and 1�2k� with multipliities m�1 and 1 respetively.4. Let S 2 Ro(R0; R) suh that rk(S) = n � 1. The exponents of Coney (k)along GS are 0 and ��(S; k) with multipliities m� 1 and 1 respetively.Proof: The map  is homogeneous of degree �1, hene the degree of Coney (k)equals minus the degree of Caltx (k). This proves 1. Properties 2 and 3 are lear.Suppose S is as in 4. Take v 2 HS and � 2 V R0 suh that v+�� 2 HR0 for small� 6= 0. The exponents in property 4 an be derived by onsidering the smoothurve ("�1v+ �), " small, passing through GS together with the exponents andhomogeneous degree of Caltx (k). 2Let A be the algebra of W (R0; R)-invariants in the oordinate ring of the aÆnevariety Cone(R0; R). Let A+ be the maximal ideal of elements with vanishingonstant term. Take Cone(R0; R)=W (R0; R) := Spe(A) and think of this as aweighted homogeneous aÆne variety. Then A+ 2 Spe(A) orresponds to 0 inthis variety and we all this the origin of Cone(R0; R)=W (R0; R).For a homogeneous set U we write �W (U) for the image of �(U)=W (R0; R)in Spe(A). The spae Spe(A) has a natural strati�ation indued by theintersetion struture of the odimension one subspaes �WS := �S=W (R0; R)and �W� := ��=W (R0; R). Here S ranges over the elements in Ro(R0; R) of rankn� 1 and � ranges over (R0)??.Let Y � (HR0) denote the W (R0; R)-orbit of y. As in the ase of the systemEv(k), the system Coney (k) gives rise to a m-dimensional system on �W (HR0) (asmooth subvariety) by property 2. Denote this system by ConeY (k). Again, mon-odromy indues a representation �� of the fundamental group �1(�W (HR0); Y )on the dual C�Y (k) of ConeY (k).Lemma 4.12 Assume that the parameter k 2 K 0>0 is hosen in suh a waythat both �(R; k) and �(R0; k) are in the hyperboli range. Then there exists apositive de�nite ��-invariant Hermitian form on C�Y (k).Proof: The m-dimensional subspae of EW (R)v(k) �xed by the �rst n � mreetions �(k; gj) is the orthoplement of the span of speial eigenvetors e1(k)93



upto en�m(k) with respet to the monodromy invariant hyperboli form. Byassumption the form restrited to this span is also hyperboli and hene it isde�nite on the orthoplement. It is also invariant on the altered system and onits push forward. This proves the lemma. 2We are now in a position to prove the main theorem of this setion. SupposeS 2 Ro(R0; R) has rank n � 1 and � 2 (R0)??. De�ne p� := 2=(1 � 2k�) andpS := �z=�(S; k) where z is either 1 or 2 depending on whether or notW (R0; R)ontains an element that ats as an involution �xing GS .Theorem 4.7 Assume that both �(R; k) and �(R0; k) are in the hyperboli range(as in lemma 4.12). Assume p� 2 N�2 and pS 2 N�1 for all p� and pS de�nedabove.Let Xu(p)! �W (HR0) be the universal Galois overing of loal degrees p� andpS along �W� and �WS respetively. Then Xu(p) embeds in a rami�ed overingXr(p) of Spe(A). Moreover Xr(p) naturally arries the struture of a vetorspae and the overing automorphism group is a �nite group of linear transfor-mations.Proof: The proof is based on essentially the same ideas found in the proof oftheorem 3.14, page 58. Again ConeY (k) indues a anonial multivalued evalua-tion map ev from �W (HR0) into the dual C�Y (k).The overing Xu(p) extends to a rami�ed overing Xor (p) over the relative in-teriors of the odimension one divisors. By a omputation of the Wronskian ofEv(k) similar to the one in the proof of theorem 3.13, page 56 one an provethat the evaluation map lifts to a single valued immersion evor on Xor (k).Now one proeeds by indution on the orank of R0 in R. Let x be a point onGS for some S 2 Ro(R0; R) of rank rk(R0)+m for some m > 0. By theorem 4.2x has a neighborhood U whih is isomorphi to the produt�m � (�N(S;R) \ Cone(S;R)):Now by assumption the stabilizer of x inW (R0; R) is a diret produt ofW (S;R)and the subgroup of W (S) generated by all reetions �xing R0 and x.In partiular the fators in this diret produt eah at in a seperate fator in theCartesian produt for U written above. Hene the projetion of x on Spe(A)has a small neighborhood whose intersetion with the regular part �W (HR0)is also a produt U1 � U2. Here U1 is the omplement of the disriminant ofa �nite reetion group in a neighborhood of 0 and U2 is the regular part ofCone(S;R)=W (S;R) interseted with a neighborhood of its origin.By the indution hypothesis and the results of setion 3.5 one onludes thatXor (p) embeds in a rami�ed overing X�r (p) of Spe(A)nfA+g and X�r (p) is asmooth variety. 94



The map evor extends loally biholomorphially over X�r (p) to a map ev�r . Thefat that monodromy of ev admits a positive de�nite invariant Hermitian formimplies that this extension is an isomorphism onto C�Y (k)nf0g.Then C�Y (k) is a rami�ed overing of Spe(A) extending Xu(p) and its automor-phism group is just the monodromy group of ev. 2Remark 4.4 The ondition that all stabilizers should be diret produts is notstritly neessary. The proof of the main theorem 4.15 in the next setion ismore general. The argument given there ould be applied here as well. It turnsout however that we do not need the stronger result that would be obtained.Remark 4.5 With the given assumptions theorem 4.7 implies that the homo-geneous degree ��(R0; k) of ConeY (k) equals z=m for some integer m � 1. Herez is either 1 or 2 depending on whether or not W (R0; R) ontains an elementating as �1 on Cone(R0; R).4.4 GIT and root systemsIn this setion we generalize the usage of Geometri Invariant Theory as in [DM℄to arbitrary root systems. The relation between our de�nitions and SL(2; C )-invariants is explained in theorem 4.8.Denote the polynomial algebra of V by P [V ℄ and letP [V ℄ =Md�0 P d[V ℄be its anonial grading in homogeneous omponents. If V = V1 � V2 for twolinear subspaes V1, V2 then there is a anonial isomorphismP d[V ℄ �= Mp+q=dP p[V1℄
 P q[V2℄:We will onsider an element of the spae P p[V1℄ 
 P q[V2℄ as a P p[V1℄-valuedpolynomial on V2 homogeneous of degree q. In partiular for any S 2 Ro(;; R)we have suh a deomposition arising from V = VS � V S .De�nition 4.3 Let S0 � S be two elements of Ro(;; R). LetP 2 P a[VS0 ℄
 P b[V S0 ℄;i.e. a P a[VS0 ℄-valued polynomial on V S0 . If P 6= 0 the vanishing multipliity ofP along V S is de�ned bymS(P ) := maxfj 2 N j P 2Md�j P a[VS0 ℄
 P d[VS \ V S0 ℄
 P b�d[V S ℄g:95



It is useful to de�ne mS(0) =1 with 1 > m for all integers m. The projetionof P in P a+mS(P )[VS ℄
 P b�mS(P )[V S ℄is a P a+mS(P )[VS ℄-valued polynomial on V S and will be denoted by PS.Note that if S0 has orank one in S and � 2 VS \ V S0 , � 6= 0 andP 2 P a[VS0 ℄
 P b[V S0 ℄then P is divisible by (��)mS(P ) and no higher power of ��. Here �� denotesthe linear funtional (�; �) on V S0 .Lemma 4.13 Let S00 � S0 � S be three elements of Ro(;; R) andP 2 P a[VS00 ℄
 P b[V S00 ℄:Then the following inequality between multipliities holds:mS(PS0) � mS(P )�mS0(P )Proof: This follows from the deompositionV S00 \ VS = (VS0 \ V S00)� (V S0 \ VS):Indeed if PS0 has a non zero omponent inP a[VS00 ℄
 P d1 [VS0 \ V S00 ℄
 P d2 [V S0 \ VS ℄
 P d3 [V S ℄then d1 = mS0(P ) and d1 + d2 � mS(P ). Hene d2 � mS(P ) �mS0(P ) whihimplies the same lower bound for mS(PS0). 2We an now introdue the key objet for the onstrution, a ertain algebra ofpolynomials. It is onvenient to de�ne �(;; k) := 1.Let k be a rational multipliity parameter suh that �(R; k) lies in the range(1�m2; 0℄, i.e. is of hyperboli or paraboli type (m2 denotes the seond smallestexponent of R). Let N > 0 be a ommon denominator of the k�, i.e. Nk� 2 Zfor all � 2 R. Then for any root subsystem S 2 Ro(;; R) we have N�(S; k) 2 Z.Indeed any �(S; k) is an aÆne funtion in k with integer oeÆients.De�nition 4.4 We de�ne a vetor spaeAN (R; k) := fP 2 P�N�(R;k)[V ℄ j mS(P ) � �N�(S; k) for all S 2 Ro(;; R)of rank rk(R)� 1gDe�ne a C -algebra AN (R; k) byAN (R; k) :=Xd�0AdN (R; k)If �(R; k) < 0 then this algebra has a natural grading (the sum in its de�nitionis then a diret sum). If �(R; k) = 0 then AN (R; k) �= C .96



Before studying the struture of this algebra we �rst show its relation to Geo-metri Invariant Theory as enountered in hapter 2. Take R of type An. Usethe standard realisation of this root system in C n+1 . Let e1; : : : ; en denote theanonial basis of C n+1 and V the n-dimensional subspae of all vetors forwhih the sum of their oordinates equals zero. The roots are then given byei � ej for 1 � i; j � n+ 1 and i 6= j.Let k = m=N for positive integers m and N suh that N < (n + 1)m < 2N .De�ne mn+2 as the remainder 2N � (n + 1)m and take mj := m for j 2f1; : : : ; n + 1g. Let �j denote the anonial projetion of (P1)n+2 onto the jthfator P1 for j = 1; : : : ; n+ 2. De�ne a line bundle L over (P1)n+2 as followsL := n+2Oj=1 ��jOP1(mj):Consider the diagonal SL(2; C )-ation on (P1)n+2. Then there is a anonialSL(2; C )-ation on L turning it into a homogeneous line bundle. We an identifyglobal setions in L
d with polynomials in 2n+ 4 variables (written in matrixform) P � x1;1 : : : x1;n+2x2;1 : : : x2;n+2 �that are homogeneous of degree dmj in the jth olumn. An element g 2 SL(2; C )ats on suh a setion by (gP )(x) := P (g�1x)for a matrix x and matrix multipliation in the right hand side argument.Theorem 4.8 There is an isomorphism of algebrasA(L) :=Md�0 �((P1)n+2;L
d)SL(2;C) �= AN (An; k):Here the left hand side is the graded algebra of invariant setions in powers ofL.Proof: De�ne a linear map d of �((P1)n+2;L
d)SL(2;C) into P�dN�(An;k)[V ℄by d(P )(x1; : : : ; xn+1) := P � x1 : : : xn+1 11 : : : 1 0 �Indeed one an hek that d(P ) is homogeneous of degree �dN�(An; k) byonsidering the ation of diag(�; ��1) for � 2 C � .The SL(2; C )-orbit O of the setf� x1 : : : xn+1 11 : : : 1 0 � j (x1; : : : ; xn+1) 2 V g97



is just fy 2 Mat(2� (n+ 2); C ) j det(yj yn+2) 6= 0 for all j � n+ 1gwhere yj denotes the jth olumn of y. In partiular this set is dense and hened is injetive. Remains to ompute its image.A paraboli irreduible root subsystem of An is of type As for some s � n. If Sis suh a system of rank s < n then there exists a subsetI � f1; : : : ; n+ 1g; #I = s+ 1suh that V S is just the set of all vetors in V whose oordinates ej , j 2 I oin-ide. The reetion groupW (An) ats transitively on paraboli root subsystemhene we may assume that I is f1; : : : ; s+ 1g. Let (x; : : : ; x; xs+2; : : : ; xn+1) 2V S and x1; : : : ; xs+1 2 C suh that Ps+1j=1 xj = 0. If P is an invariant setion in�((P1)n+2;L
d) then an elementary alulation yields for all � 2 C :P � x+ �x1 : : : x+ �xs+1 xs+2 : : : xn+1 11 : : : : : : 1 0 � =��dN�(As;k)P � x1 : : : xs+1 xs+2 � x : : : xn+1 � x 11 : : : 1 � : : : � 0 �This shows that mS(d(P )) � �dN�(As; k) and in partiular d(P ) is an ele-ment of AdN (An; k). On the other hand if P 2 AdN (An; k) one an de�ne afuntion eP on the dense orbit O by presribingeP � x1 : : : xn+1 11 : : : 1 0 � := P (x1; : : : ; xn+1)and extending it by SL(2; C )-invariane and homogeneity properties. The on-ditions on the vanishing multipliities of P are easily seen to imply that eP isloally bounded near any point in Mat(2�(n+2); C ). Hene eP extends to an in-variant setion also denoted eP . Clearly d( eP ) = P . The sequene (1; 1; 2; : : :)gives the isomorphism. 2Using theorem 4.6 on page 91 we derive two important fats about the algebraAN (R; k).Theorem 4.9 If P 2 AdN (R; k) and S 2 Ro(;; R) then the following inequalityholds: mS(P ) � �dN�(S; k)Proof: This is true if rk(S) � n�1. Now use downward indution on the rankof S. So suppose the above inequality holds for any rank greater thanm. Let S 298



Ro(;; R) be of rank m. For any S0 2 So(S;R) the spae V S0 is of odimensionone in V S . PS is a homogeneous polynomial of degree �dN�(R; k)�mS(P ) onV S . Moreover, by our indution hypothesis and lemma 4.13 we have:mS0(PS) � �dN�(S0; k)�mS(P )This leads to the equation:XS02So(S;R)(�dN�(S0; k)�mS(P )) � �dN�(R; k)�mS(P )Now using the equality from theorem 4.6 this is equivalent tomS(P ) � �dN�(S; k):The theorem follows by indution. 2When equality holds, one an make a sharper statement.Theorem 4.10 Let S � R be a paraboli irreduible root subsystem. If P 2AdN (R; k) and mS(P ) = �dN�(S; k) then PS is a pure produt:PS = Q
 YS02So(S;R)(��S0)�dN(�(S0;k)��(S;k))Here �S0 2 VS0 \ V S is a non-zero vetor and Q is an element of AdN (S; k).Proof: If mS(P ) = �dN�(S; k) then it follows from theorem 4.9 and lemma4.13 that for any S0 2 So(S;R) the following inequality holds:mS0(PS) � �dN(�(S0; k)� �(S; k))Hene PS is divisible by (��S0)�dN(�(S0;k)��(S;k)). This implies that PS is divisibleby a produt of linear fators of total degree at least �dN(�(R; k) � �(S; k)).But this is exatly the homogeneous degree of PS . This shows that it equalsa Q times this produt of linear funtions for some Q 2 P�dN�(S;k)[VS ℄. Thatthis oeÆient Q is in fat in AdN (S; k) follows from the deompositionV = VS0 � (V S0 \ VS)� V Sfor any S0 2 Ro(;; S). 2Note that the proof of theorem 4.10 even shows that the equality mS(P ) =�dN�(S; k) implies the equality mS0(P ) = �dN�(S0; k) for all S0 2 So(S;R)and hene for all S0 2 Ro(S;R).The next lemma shows an interrelation between exponents of irreduible para-boli root subsystems. 99



Lemma 4.14 Suppose �(R; k) is of hyperboli type, i.e. 1�m2 < �(R; k) < 0.Let S 2 Ro(;; R) suh that �(S; k) is also of hyprboli type. Let S0 2 R(S;R).If S0 is irreduible then �(S0; k) is of hyperboli type. If S0 is reduible and S00is an irreduible omponent of S0 not ontaining S then �(S00; k) > 0 i.e. it isof ellipti type.Proof: Beause both are paraboli we may assume that S and S0 are generatedby simple roots of R. Say by simple roots �j for j 2 I or j 2 I 0 respetively.Assume that S0 is irreduible. Then the hyperboli Hermitian form H(k) asde�ned in setion 3.2 restrits to a hyperboli form on the C -span of ej , j 2 I .Hene its restrition to the bigger C -span of ej , j 2 I 0 must also be hyperboli.This implies that �(S0; k) is of hyperboli type.If S0 is reduible and S00 is an irreduible omponent of S0 di�erent from S thenS00 is generated by simple roots �j , j 2 I 00. Moreover �i ? �j if i 2 I andj 2 I 00. By de�nition of H(k) the spae SpanC fei j i 2 Ig is perpendiular toSpanC fej j j 2 I 00g with respet to H(k). Beause H(k) is hyperboli on theformer span it must by positive de�nite (ellipti) on the latter. This impliesthat �(S00; k) > 0. 2Theorem 4.10 allows the following important onstrution of algebra homomor-phisms from AN (S; k) to AN (S0; k) for S0 � S.De�nition 4.5 Let S0 � S � R be irreduible and paraboli root subsystemssuh that �(S0; k) � 0. De�ne a homomorphism �S0;S : AN (S; k) ! AN (S0; k)of graded algebras as follows. Fix a polynomial on V S0 \ VS given by� := YS002So(S0;S)(��S00)�N(�(S00;k)��(S0;k))as in theorem 4.10 for d = 1. If P 2 AdN (S; k) then �S0;S(P ) is de�ned as theprojetion of P onP�dN�(S0;k)[VS0 ℄
 P�dN(�(S;k)��(S0;k))[V S0 \ VS ℄divided by �d.Call two homomorphisms �1; �2 between graded C -algebras A1; A2 equivalent ifthere exists a non zero omplex number t suh that for any homogeneous z 2 A1�1(z) = tdeg(z)�2(z):Note that the onstrution of �S0;S is unique upto equivalene of homomor-phisms. These homomorphisms relate niely to eah other aording to thefollowing lemma. 100



Lemma 4.15 For any sequene S00 � S0 � S the homomorphisms�S00;S0Æ�S0;S and �S00;Sare equivalent.Proof: Take P 2 AdN (S; k). If mS00(P ) > �dN�(S00; k) then both homo-morphisms are zero at P . So suppose mS00(P ) = �dN�(S00; k) and henemS0(P ) = �dN�(S0; k). Using these two equalities and applying theorem 4.10twie shows that P has a non zero omponentQ
�0 
�00 2 P a[VS00 ℄
 P b[V S00 \ VS0 ℄
 P [V S0 ℄a = �dN�(S00; k); b = �dN(�(S0; k)� �(S00; k)); = �dN(�(S; k)� �(S0; k)):Here �0 and �00 are produts of linear fators and Q 2 AdN (S00; k) divides P .In partiular both homomorphisms map P to a non zero salar multiple of Q.2Remark 4.6 One an even prove that the �S0;S an be onstruted in suh away that the homomorphisms �S00;S0Æ�S0;S and �S00;S are equivalent by a \twist"of �1.Now we onstrut a variety that is the aÆne one of a ompletion of the proje-tive set P(V reg) depending on the multipliity parameter k. The variety Qsstappearing in [DM℄ is the SL(2; C )-quotient of (P1)n+2 with respet to the linebundle L, i.e. Proj(A(L)). To get a ompletion of P(V reg) in general it isreasonable to onsider Proj(AN (R; k)):However there remain some problems that ompliate the study of this spae ingreat detail. Here are some important ones.1. For what parameters k is AN (R; k) non-trivial?2. Is AN (R; k) �nitely generated?3. Are the homomorphisms �S0;S as introdued before surjetive?4. Does P(V reg) embed as an open dense set?Of ourse if R is of type An then these questions an be answered aÆrmatively.The ase of general systems remains unlear. At the end of this hapter Ipresent some partial results on the stated questions. To do so we onsider onlya subalgebra of AN (R; k) in that setion. Namely the algebra generated byproduts of dual roots. 101



Now instead of studying the algebra AN (R; k) I onsider the subalgebra gener-ated by one homogeneous omponent AN (R; k). This has the advantage thatthe orresponding aÆne variety an be onstruted in a straight forward wayresulting in expliit formulas and omputations.Now �x an irreduible root system R of full rank � 3 in E and a rationalmultipliity parameter k suh that �(R; k) is of hyperboli type. For any S 2Ro(;; R) we de�neHSo = HSo (R) := V Sn [ fV S0 j S0 2 Ro(S;R) with �(S0; k) � 0gNote that this oinides with HSo (R) of setion 4.3 if �(S; k) � 0 so notationshould not be too onfusing.Fix a ommon denominator N > 0 of k suh that N�(S; k) is even for all S 2Ro(;; R) with �(S; k) < 0. The spae AN (R; k) is learly a �nite dimensionalvetor spae. If A0N (R; k) is its dual we denote the anonial map of VR intoA0N (R; k) (evaluation) by �R. Then �R is homogeneous of degree �N�(R; k) inpartiular �R(�v) = �R(v) for all v 2 VR.Like �o in setion 4.3, page 87 we de�neIoR := f(v; y) 2 VR � A0N (R; k) j �R(v) = �y for some � 2 C �g:Let IR be the losure of IoR and de�ne IR(Y ) for a subset Y � VR byIR(Y ) := fy 2 A0N (R; k) j (v; y) 2 IR for some v 2 Y g:The homogeneous aÆne variety Q(R; k) is by de�nition IR(f0g), i.e. the losureof �R(VR).Note that if �(R; k) = 0 then Q(R; k) �= C and �R is a onstant non zero map.To relate the varieties Q(R; k) and Cone(R0; R) we need the following theorem.Theorem 4.11 Let S 2 Ro(;; R). De�ne a sequene of N(S;R) polynomialson V S as follows: FS0 := YS00 6=S0 ��S00 ; S0 2 So(S;R)The produt is taken over every S00 2 So(S;R) and �S00 is a �xed non zero vetorin VS00 \ V S for all S00 2 So(S;R).If P is a polynomial on V S suh that:1. P is homogeneous of degree m(N(S;R)� 1) for some m � 1.2. For all S0 2 Ro(S;R) the vanishing multipliity of P along V S0 satis�esmS0(P ) � m(N(S; S0)� 1):102



Then there exists a polynomial Q in the indeterminates XS0 , S0 2 So(S;R) suhthat Q is homogeneous of degree m andP = Q((FS0 )S02So(S;R)):Proof: The proof is given by using a partial fration deomposition theorem.It will appear in a separate artile. 2This theorem has the following important onsequene.Theorem 4.12 Suppose S 2 Ro(;; R) and �(S; k) < 0. Let  (= S;R) denotethe map of HSo into Cone(S;R) as in setion 4.3. Let for eah S0 2 So(S;R)the orresponding oordinate of  be given by 1=��S0 . The map�S : VS � (HSo )! Q(R; k)given by�S : (v; y) 7! 0� YS02So(S;R) y�N(�(S0;k)��(S;k))S0 1A � �R(v + �1(y))is the restrition of a polynomial map on VS � CN(S;R) . In partiular it extendsto a morphism �S of VS � Cone(S;R) into Q(R; k). Moreover there exists anon zero onstant st suh that �S(v; 0) = st�S(v)Æ�S;R for all v 2 VS.Proof: Let P 2 AN (R; k) and let d := �N�(S; k)+m for some m � 0. Denotethe projetion of P onto P d[VS ℄
P�N�(R;k)�d[V S ℄ by Pd. Then Pd is divisibleby the produt �d := YS02So(S;R)(��S0)�N�(S0;k)�d:Consider the P d[VS ℄-valued polynomial Pd=�d on V S . It is homogeneous ofdegree m(N(S;R) � 1) and satis�es mS0(Pd=�d) � m(N(S; S0) � 1) for anyS0 2 Ro(S;R). Now by putting the de�nitions together one heks1=�0(�1(y)) = YS02So(S;R) y�N(�(S0;k)��(S;k))S0 :Using theorem 4.11 we onlude thatYS02So(S;R) y�N(�(S0;k)��(S;k))S0 Pd(u+ �1(y))is polynomial in u and y and homogeneous of degree m in y. This shows that�S extends to a morphism on VS�Cone(S;R). For y = 0 we get �S(v; 0)(P ) =103



(P0=�0)(v) and this is exatly �S(v)Æ�S;R(P ) for all P upto some salar multiple.2If S 2 Ro(;; R) and �(S; k) = 0 then �S has the invariane property�S(�u; ��1y) = �S(u; y)for all � 2 C � . Moreover �S(u; y) is a �xed point if either one of u and y vanishes(i.e. it does not depend on the other parameter). Let |S be the anonial map ofVS�CN(S;R) into VS
CN(S;R) (a Segre embedding from a projetive geometripoint of view). Then the map �S := �SÆ|�1S is a well de�ned morphism of|S(VS �Cone(S;R)) into Q(R; k).At this point we will make some assumptions to assure that the varieties Q(R; k)have some nie properties. Partial justi�ation of these assumptions is given atthe end of this setion.We make the following assumptions.1. For all S 2 Ro(;; R) with �(S; k) < 0: The map �S is an immersionof H;o(S) onto an open dense set in Q(S; k). Moreover �S(v1) = �S(v2)for some v1; v2 2 VS if and only if v1 = !v2 for some ! 2 C satisfying!N�(S;k) = 1.2. If S 2 Ro(;; R) with �(S; k) � 0 and S0 2 Ro(S;R) then �S;S0 is surje-tive.3. For any S 2 Ro(;; R) suh that �(S; k) < 0: If v 2 H;o(S) then �S isloally biholomorpi at (v; 0) 2 VS � Cone(S;R), i.e. is the restrition ofa loally biholomorphi map.4. For any S 2 Ro(;; R) with �(S; k) = 0: The mapC � � |S(VS � Cone(S;R)) 3 (z; t) 7! z�S(t) 2 Q(R; k)is loally biholomorphi at (1; 0).If S � S0 � R are in Ro(;; R) the homomorphism �S;R indues an injetivelinear map ��S;R of A0N (S; k) into A0N (R; k) and ��S0;RÆ��S;S0 equals ��S;Ruptosome salar multiple. There is a nie relation between Q(S; k) and Q(R; k)using the map ��S;R.Theorem 4.13 Let S 2 Ro(;; R) suh that S 6= R and �(S; k) � 0. The map��S;R maps Q(S; k) into IR(HSo ) � Q(R; k).Proof: Let u1 2 VS and u2 2 HSo . Take � 2 C � . Then (�u1+u2;�S(u1; �(u2))is an element of IR where �S and  are as in theorem 4.12. In partiular104



(u2;�S(u1; 0)) 2 IR whih shows that �S(u1; 0) = st��S;RÆ�S(u1) is ontainedin IR(fu2g). Beause the latter set is losed ��S;R maps Q(S; k) into IR(fu2g).2Note that if �(S; k) = 0 then ��S;R maps Q(S; k) onto a line (a one dimensionallinear spae). Indeed Q(S; k) �= C in this ase. We all suh lines the uspidallines on Q(R; k) and any point on suh a line a uspidal point.The following theorem proves that in fat IR(HSo ) is exatly the ��S;R-image ofQ(S; k).Theorem 4.14 The ��S;R-images of IS(H;o(S)) onstitute a strati�ation ofQ(R; k)nf0g if S ranges over all elements of Ro(;; R) with �(S; k) � 0.Proof: Let � : Y ! VRnf0g be a smooth blow up suh that:1. The restrition of � to ��1(H;o) is an injetive immersion.2. For S 2 Ro(;; R) with �(S; k) � 0 the losure of the preimage ��1(HSo )in Y is a divisor of odimension one.3. These divisors have normal rossings.Take n = rk(R). Let x 2 Y be a point and x1; : : : ; xn polydis oordinates ona neighborhood U of x suh that the exeptional divisors on Y passing throughU have loal equations xj = 0, j = 1; : : : ; s for some s � n. Let W (Rj) bethe stabilizer of the �-image of the divisor xj = 0 for some root subsystem Rj .De�ne numbers mj as the multipliity �N�(Rj ; k) for j � s.Then the map on Unfu 2 U j xj(u) = 0 for some j � sg given byx�m11 � � �x�mss � �RÆ�extends holomorphially over all points u 2 U with xj(u) = 0 for at most onej � s. Indeed by the argument from the proof of the previous theorem it mapsthe set fu 2 U j xj(u) = 0 and xi(u) 6= 0 for all i � s; i 6= jginto ��Rj ;R(Q(Rj ; k)). Now by Hartog's theorem the map extends over all ofU and the divisor xj = 0 neessarily gets mapped into ��Rj ;R(Q(Rj ; k)). Thetheorem follows by indution on the rank of R. 2With this strati�ation of Q(R; k) in mind, assumptions 3 and 4 about thenature of Q(R; k) above give its loal struture near non-uspidal and uspidalpoints respetively.The reetion group W (R) ats naturally on AN (R; k). The map �R is W (R)-equivariant and hene IR is invariant under the diagonal W (R)-ation. In par-tiular the W (R)-ation restrits to an ation on Q(R; k). The map ��S;R is105



W (S)-equivariant if we onsider W (S) as a subgroup of W (R) in the naturalway.If S 2 Ro(;; R) has rank rk(R)�1 and �(S; k) < 0 then IR(HSo ) has odimensionone in Q(R; k).Lemma 4.16 For S as above the element w 2 W (R) ats as an involution onQ(R; k) that �xes IR(HSo ) pointwise if and only if �w is a reetion �xing S.Proof: By invariane of IR and theorem 4.13 suh an element w must at asa salar ! on VS for some ! satisfying !N�(S;k) = 1. Then w maps S onto Sand so ! = �1. Now w ats non trivial on Q(R; k) and hene !w has to be areetion of V (S has orank one in R). 2Any reetion inW (R) ats as a ertain involution onQ(R; k) �xing a subvarietyof odimension one. On V any subgroupW (S) for S � R a strit paraboli rootsubsystem has a nonzero simultaneous �xed point. On Q(R; k) the situation isdi�erent.Lemma 4.17 Let S 2 Ro(;; R). The subgroup W (S) of W (R) has a simulta-neous �xed point on �R(H;o) if and only if �(S; k) > 0.Proof: The map �R is W (R)-equivariant and its �bres are C�N�(R;k)-orbits(yli group of roots of unity ating by salar multipliation). Hene �xedpoints of a reetion s� 2 W (S) on �R(H;o) are exatly the �R-images of itseigenspaes in VR (reall that N�(S; k) was supposed to be even). The inter-setion of eigenspaes of all reetions in W (S) is exatly V S . We onlude theproof by the observation that V S intersets H;o if and only if �(S; k) > 0. 2Corollary 4.4 Let S be as in the previous lemma and let S0 2 Ro(;; R) suhthat �(S0; k) < 0. The group W (S) has a simultaneous �xed point on the relativeinterior ��S0;RÆ�S0(H;o(S0))of Q(S0; k) embedded in Q(R; k) if and only if �(S; k) > 0 and S0 is W (S)-stable.Proof: The set ��S0;RÆ�S0(H;o(S0)) intersets no IR(HS00o ) for any S00 � S0. ByW (R)-invariane of IR it follows that HS0o and hene S0 must be W (S)-stable.If S ? S0 then �(S; k) > 0 by lemma 4.14 on page 100 and W (S) even �xesIR(HS0o ) pointwise. If S � S0 we an apply the previous lemma on Q(S0; k) byW (S)-equivariane of ��S0;R. 2The importane of these observations is that if x 2 Q(R; k)nf0g is any nonuspidal point then x an beW (S)-stable for some S 2 Ro(;; R) only if �(S; k) >0, i.e. is of ellipti type. This plays an important role in proving the maintheorem on disreteness of monodromy in this ase.106



4.5 Hypergeometri funtionsAfter studying the varietyQ(R; k) the hypergeometri funtion returns into play.In this setion we �nally want to prove disreteness of the monodromy group ofthe system ES(k) under some natural integrality onditions on its exponents.The hypergeometri system for a root system of type Dn is atually the sameas that of type Bn if we de�ne k� = 0 for the 2n \short" roots. Beause of thisand the fat that Dn plays an exeptional role in some sense (see remark 4.2 onpage 86 for example) we do not onsider root systems of type Dn in this setionaltogether.The map �R is assumed to be an immersion on H;o. In partiular it is animmersion on V reg. Consider the hypergeometri system Ev(k) of germs at thepoint v 2 V reg . Let y := �R(v) and denote the pushforward of Ev(k) by �R asEQy (k). Naturally any germ in EQy (k) an be ontinued analytially throughout�R(V reg). The system has the following properties.Lemma 4.18 1. The determination order of EQy (k) is rk(R) and any deter-mination is homogeneous of degree 1=N .2. For any w 2 W (R) there is a anonial isomorphism of EQy (k) onto EQwy(k)as vetor spaes.3. For any root � 2 R the system EQy (k) has exponents 0 and 1� 2k� along�R(�? \ V reg) with multipliities n� 1 and 1 respetively.4. Let S 2 Ro(;; R) be of rank rk(R) � 1 suh that �(S; k) < 0. Then theexponents of EQy (k) along IR(HSo ) are 0 and ��(S; k) with multipliitiesrk(R)� 1 and 1 respetively.Proof: The �bres of �R on V reg are orbits of a yli group. Beause the systemEv(k) is homogeneous of degree �(R; k) it is invariant under this yli group.Hene the push forward EQy (k) has the same determination order (rk(R)). Thehomogeneous degree of EQy (k) is the quotient of the homogeneous degrees ofEv(k) and the map �R. This proves 1.Properties 2 and 3 are lear. Let S be as in property 4. Reall that in thisase IR(HSo ) has odimension one in Q(R; k) and is isomorphi to Q(S; k). Letu1 2 VS and u2 2 HSo . The urve� 7! �S(u1; �(u2))is a smooth urve for � 2 C near 0 and passes through IR(HSo ). By de�nitionof �S it is also given by� 7! st�R(�� �(S;k)�(R;k) (�u1 + u2))107



where st is some onstant. Reall that the system Ev(k) is homogeneous ofdegree �(R; k) and has loal exponents �(S; k) and 0 along V S with multipliitiesrk(R) � 1 and 1 respetively. If � is one of these exponents then the formulaabove shows that � � �(S; k) is a loal exponent of EQy (k) along IR(HSo ). 2Let A be the algebra of W (R) invariant elements in the oordinate ring ofthe aÆne variety Q(R; k). Take Q(R; k)=W (R) := Spe(A) and think of thisas a weighted homogeneous aÆne variety. Let A+ be the ideal of A of allelements with zero onstant term. We will all A+ the origin of the varietyQ(R; k)=W (R). There is a anonial projetion of Q(R; k) onto Q(R; k)=W (R).For U � V denote the quotient IR(U)=W (R) by IWR (U). If S 2 Ro(;; R) and�(S; k) = 0 we all IWR (HSo ) also a uspidal line.The map �R is not injetive on V reg and hene W (R) will not even at freely on�R(V reg) in general. However we assumed that the rank of R is at least three.A onsequene of this is that if w 2 W (R) has a �xed point on �R(V reg) thenthe �xed point set of w has odimension at least two in �R(V reg) (reall thatwe exluded the ase Dn (n odd) whih would be a ounter example to thisobservation). We denote the maximal subset of �R(V reg) on whih W (R) atsfreely by Qf (R; k). In partiular �R(V reg \ E) � Qf (R; k).Let Y denote the W (R)-orbit of y on Qf (R; k). The system EQy (k) desendsnaturally to a system EQY (k) on Qf (R; k)=W (R). Denote the dual of EQY (k) as avetor spae by EQY (k)�. Analyti ontinuation of (ompound) germs in EQY (k)indues a (left) representation�� : �1(Qf (R; k)=W (R); Y )! End(EQY (k)�):Note that �1(Qf (R; k)=W (R); Y ) is isomorphi to �1(C nn�; P (v)) and heneto B(M). The ��-invariant Hermitian form H� on EQY (k)� is non degenerateand has signature (1; n� 1).There is a natural multivalued evaluation map ev ofQf (R; k)=W (R) into EQY (k)�whose monodromy is given by ��. Reall that ev maps even into B , the set ofall vetors v suh that H�(v; v) > 0. Let B be the (n� 1)-dimensional omplexball. Then C �B is the universal overing of B . If eX is the universal overing ofQf (R; k)=W (R) then ev indues a (single valued) map fEV on eX mapping intoC � B as in setion 3.7. Let ~� : Aut( eX j X) ! eG be a homomorphism onto agroup of transformations of C �B suh thatfEV(gx) = ~�(g)fEV(x)for all x 2 eX and g 2 Aut( eX j X) (ompare with �gure 3.4, page 72).We an now formulate the main theorem of this setion. For � 2 R de�nep� := 2=(1�2k�). Let S 2 Ro(;; R) be of rank rk(R)�1 suh that �(S; k) < 0.De�ne pS as �2=�(S; k) or �1=�(S; k) depending on whether or not W (R)ontains an element w stabilizing S suh that w or �w is a reetion of VR.108



Theorem 4.15 Assume that the four onditions on page 104 hold. Supposethat for all � 2 R the number p� 2 N�2 and for all S of rank rk(R) � 1 withnegative exponent the number pS 2 N�1 . Let Xu(p) be the universal Galoisovering of Qf (R; k)=W (R) with loal degrees p� and pS along IWR (�? \ V reg)and IWR (HSo ) respetively. Then fEV indues an embedding of Xu(p) into C �B.Moreover C�B is a rami�ed overing of Q(R; k)=W (R) minus the origin and alluspidal lines extending Xu(p) and with automorphism group eG. In partiularthe image of �� ats disretely on B .Proof: A speialization of the argument from setion 3.7. Considering the loalexponents of the system EQY (k) shows that fEV desends to a loally biholomor-phi map evu on Xu(p).Now use the loal struture of Q(R; k) to extend Xu(p) as follows. Let S 2Ro(;; R) be suh that �(S; k) < 0. Take x in the relative interior �S(H;o(S))of Q(S; k) embedded in Q(R; k) by ��S;R. By our assumptions on Q(R; k) andthe properties of the morphism �S introdued before x has a neighborhood Uisomorphi to �rk(S) � (�N(S;R) \Cone(S;R)):We may assume that U is suh that for any w 2 W (R) if wU \ U 6= ; then w�xes x. We may also assume that U \Qf (R; k) is the produt of its projetionson eah of the fators of U (in the artesian produt for U shown above).An enumeration of all possible multipliity parameters k under onsiderationshows that the pair (S;R) will never be any of those listed in theorem 4.5,page 90. Hene theorem 4.7, page 94 will be appliable to Cone(S;R). Seethe tables in hapter 5.Let S0 � S be the set of roots suh that s�x = x for all � 2 S0. Then S0 is aparaboli root system and eah irreduible omponent has a positive exponent,i.e. is ellipti.Let the subgroup �x of W (R) be the diret produt of W (S0) and W (S;R).Here W (S;R) is as introdued in setion 4.3. It is a normal subgroup of thestabilizer of x in W (R).BothW (S0) andW (S;R) at on a separate fator in the artesian produt of U .Indeed if w 2 W (S;R) suh that w(v) = �v for all v 2 VS and P 2 AN (R; k)then P (w(vS + vS)) = P (�vS + w(vS)) = P (vS � w(vS))for all vS 2 VS and vS 2 V S . This is the reason for introduing the W (S;R)-ation as we did in de�nition 4.2, page 86.Replae U by the smaller symmetri neighborhoodU := \w2�xwU:109



The spae (U \IR(V reg))=�x is also a artesian produt, namely of the omple-ment of a disriminant and the regular part of Cone(S;R)=W (S;R) intersetedwith a neighborhood of its origin. Hene the universal Galois overing U(p) ofthis quotient spae with loal degrees p� and pS along odimension one divisorson Q(R; k) has �nite degree and embeds in a smooth rami�ed overing of U=�xby the results of setions 3.5 and 4.3.Replae U again by the smaller neighborhoodU := \w2StabW (R)(x)wU:Then the Galois overing U(p) is also the universal Galois overing with thesame loal degrees of (U \ IR(V reg))=StabW (R)(x):Indeed the map of U=�x onto U=StabW (R)(x) is a rami�ed overing with loaldegrees one along the odimension one divisors.Again it an be shown (using the fat that fEV indues a loally biholomorphimap on the extension of U(p) as in theorem 3.14, page 58 in setion 3.5) thatU(p) embeds in Xu(p) and hene this overing extends to a rami�ed overingX�r (p) of Q(R; k)=W (R) minus the uspidal lines and the origin. A similarargument as in setion 3.7 shows that the map evu extends to a biholomorhimap of X�r (p) onto C �B.This proves the theorem. 24.6 Some omputational resultsLet k be a rational multipliity parameter and N > 0 a ommon denominator ofk. In this setion we study a ertain subalgebra of AN (R; k). Let m : R! N besome multipliity parameter (not neessarily W (R)-invariant). The following\monomial" Y�>0(��)m�is an element of AN (R; k) if and only if it satis�es:1. P�>0m� = �dN�(R; k) for some d 2 N.2. P�2S\R+ m� � �dN�(S; k) for all S 2 Ro(;; R) and d 2 N satisfyingproperty 1.All suh monomials together generate a graded subalgebraArN (R; k) ofAN (R; k).Theorem 4.16 If R is of type An then ArN (R; k) and AN (R; k) are the same.110



Proof: This is a onsequene of the main theorem in invariant theory forSL(2; C ): The algebra of invariant setions in L is generated by produts ofdeterminants det(yi yj), i 6= j, y2 Mat(2� (n+2); C ). Under the isomorphism(d) : A(L) ! AN (An;m=N) these determinants oinide with dual roots ��.2Beause ArN (R; k) an be identi�ed with the C -algebra generated by a rationalone in NR+ it follows that ArN (R; k) is �nitely generated.Theorem 4.17 The algebra ArN (R; k) is non trivial exatly in the followingases: R �(R; k) 2An [�1; 0)Bn [�2; 0)E6 [�3; 0)E7 [�7=2; 0)E8 [�16=3; 0)F4 [�4; 0)H3 [�3; 0)H4 [�8; 0)Proof: Suppose the monomial with multipliity parameterm 6= 0 is an elementof AN (R; k). Summing up all multipliity inequalties for paraboli irreduibleroot subsystems of orank one in R yields lower bounds for �(R; k) as reproduedin the table. Of ourse 0 is an upper bound for �(R; k).Take for example R = H3. There are six root subsystems of type I2(5) andevery root is ontained in exatly two of those. This gives�2dN�(H3; k) = 2X�>0m� =XS of type I2(5)0� X�2S\H+3 m�1A � �6dN�(I2(5); k) = �3dN(�(H3; k) + 1)and thus a lower bound for �(H3; k) of �3.In every ase satisfying the bounds listed above one an expliitly onstruta non onstant monomial in AN (R; k). For example if m is any multiple of�N�(H3; k) then the monomial Y�2H+3 (��)mis an element of ArN (H3; k). This proves the theorem. 2It is easy to hek that the homomorphisms �S;R map ArN (R; k) into ArN (S; k)and hene restrit to homomorphisms �rS;R.111



Theorem 4.18 If R is of type An or Bn and �(R; k) lies in the hyperboli rangethen all �rS;R are surjetive. In any of the ases (F4; p; q) with p = 2, q � 12or p = 3 and q 2 f3; 4; 6; 12g or p = 4 and q = 4 the homomorphisms �rS;Rare surjetive. In the latter ases we take the multipliity parameter k suh thatkR = f1=2� 1=p; 1=2� 1=qg.Proof: In fat in all these ases a monomial in ArN (S; k) has a monomialpreimage in ArN (R; k). It suÆes to onsider S of orank one in R.Suppose R is of type An and S is of type An�1. Let m 6= 0 be a multipliityparameter on S suh that the orresponding monomial is an element of AN (R; k)say. If m0 is a multipliity parameter on An suh that its restrition to S is mthen it is not hard to hek that the monomial orresponding tom0 is an elementof AN (R; k) if and only if for every � 2 AnnSm0� � 0�X�?�m�1A+N�(An�2; k)and of ourse P�2Anm� = �N�(An; k). Note that roots perpendiular to �form a system of type An�2 ontained in S. All these inequalities an indeedbe ful�lled exatly if �1 � �(An; k) < 0.The ase R = Bn an be treated with a similar argument involving root sub-systems of orank one and two.The listed ases for F4 were heked on a omputer. This was done by onlyonsidering the extremal multipliity parameters on orank one susbsystems.The omputation then amounts to a feasibility test of a set of linear inequalities.2If in any of the ases in theorem 4.18 �(R; k) is stritly greater than the lowerbounds listed in the table above then there exists a multipliity parameter msuh that all inqualities on m orresponding to root subsystems are strit in-equalities. This implies in partiular that ArN (R; k) has suÆiently many ele-ments to ensure that �R is an immersion on V reg with yli orbits as �bres.We onlude this hapter with a �nal remark.Remark 4.7 Suppose R and k are suh that �(S; k) > 0 for every paraboliirreduible root subsystem S of orank at least two in R. Then instead of on-sidering Q(R; k) it suÆes for the purpose of proving the main theorem to blowup VR in all one dimensional linear subspaes with a hyperboli stabilizer.In partiular this suÆes to handle all ases where R has rank three. Also(H4; 3) and (F4; p; q) with p = 2 and q = 4; 5 or p = 3 and q = 4 are otherexamples. See the tables in the next hapter.It is an interesting question if in general the variety Q(R; k) (or one with similarproperties) an be obtained by suesive blow ups and blow downs of VR.112
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Chapter 5Tables
5.1 The marked Coxeter diagramsThis hapter ontains the tables of marked Coxeter diagrams of ellipti, para-boli and hyperboli type for whih the assoiated omplex reetion group isdisrete in the suitable unitary group. For some hyperboli diagrams disrete-ness is still onjetural (see the remark in setion 5.4). The tables list all asesof rank at least two and with a mark that is at least three.In the ellipti ase the assoiated reetion group is �nite. In the paraboli aseit ats oompatly on aÆne spae. For hyperboli diagrams the assoiatedreetion group ats disretely on the omplex hyperboli ball. In the hyperboliase the ation is oompat for all diagrams that do not ontain parabolisubdiagrams. In all other ases it ats with o�nite volume.5.2 The ellipti diagramse ep qmm 5 6 8 10p 3 2 2 2q 3 3; 4; 5 3 3Type (I2(m); p; q)

e e e ep p p prk 2 3 4p 3; 4; 5 3 3Type (Ark; p)114



e e e ep p p q4rk � 2 2 3p 2 3 3q � 3 3; 4; 5 2Type (Brk; p; q)5.3 The paraboli diagramse ep qmm 6 8 12p 2 3 2 2q 6 3 4 3Type (I2(m); p; q)
e e e ep p p prk 2 3 5p 6 4 3Type (Ark; p)e e e ep p p q4rk 2 3 4p 3 4 3 4 3q 6 4 3 2 2Type (Brk; p; q) e e e3 3 3e3Type (D4; 3)

e e e e3 3 2 24Type (F4; 3; 2)5.4 The hyperboli diagramsDiagrams that ontain a hyperboli proper subdiagram are the result of thetheory in hapter 4. 115



e ep qm1p + 1q < 1� 2mm � 5 and p = q if m is odd.Type (I2(m); p; q)
e e e ep p p prk 2 3p � 7 5; 6; 7; 8; 9; 10; 12; 18rk 4 5 6 7 8 9p 4; 5; 6; 8 4; 5 3 3 3 3Type (Ark; p)e e e ep p p q4rk 3p 3 4q 4; 5; 6; 7; 8; 9; 10; 12; 15; 18; 24; 42 3; 4; 5; 6; 8; 12; 20p 5 6 7 8q 2; 3; 4; 5; 10; 20 2; 3; 4; 6; 12 2; 3; 42 2; 3; 4; 8; 24p 9 10 12 18q 2; 3; 18 2; 3; 5; 15 2; 3; 4; 6; 12 2; 3; 9rk 4p 3 4 5 6 8q 3; 4; 6; 12 2; 3; 4; 6 2 2; 3; 6 2; 4rk 5 6 7 8p 3 4 3 4 3 3q 2; 3; 4; 6 2; 4 2; 3; 6 2 2; 3 2Type (Brk; p; q)e e e e eep p p p ppp 3; 4Type (E6; p) e e e e e ee3 3 3 3 3 33Type (E7; 3)e e e e e e ee3 3 3 3 3 3 33Type (E8; 3)116



e e e ep p q q4p 2 3 4 6q 4; 5; 6; 8; 12 3; 4; 6; 12 4 6Type (F4; p; q)e e ep p p5p 3; 4; 5; 10Type (H3; p) e e e ep p p p5p 3; 5Type (H4; p)
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Index of notations_, ^, 84(a; b)m, 41Area(), 18ArN (R; k), 110Aut(X j Y ), 6A(k), 56AN (R; k), AN (R; k), 96Ao(k), 62A`, 65B , 71�S , 87B, 71B(M), 42B(M;p), 44Cx(k), 91Caltx , 92ConeY (k), 93Coney (k), 93Cone(R0; R), 87C(M;p), 65�, 5, 42Æ(�; �), 76�1, 72D, 7, 42d(�; �), 28, 59, 63D�, 24(E; (�; �)), 40E , 51ES , 54Ev(k), 53EQY (k), 108

EQy (k), 107ev , 11, 24, 55ej(k), 54ej(k; �), 10ej(z), 16FS , 53F�S , 55Fv, 53�S , 103�S , 104�S0;S , 100��S0;S , 104'(z1; : : : ; zn), 15FD , 17GS , 88�, �(Y ), 87�o, 87�W (U), 93�S , 88�WS , �W� , 93��, 90R0;R, 87eG, 72G(M;p), 45HS(R), 85HSo (R), 85, 102H , 45H(�; �), 19H�, 48H�, 63[i j℄, 24118



�R, 102IoR, IR(Y ), 102IWR (U), 108K 0, 44`, 54�, 66L(k), 52(M;p), 43mS(P ), 96M(z), 18r(k), 49�(k), 48, 51�(R; k), 91N(R0; R), 83Pol(�), 18pev, 24�1(X; x), 6�r, 58P [V ℄, 95PS , 96P�(w), 19Q, 23Q(R; k), 102Qf (R; k), 108(R0)??, 84R(R0; R), Ro(R0; R), 83Rev , 57�, 53��, 55~%(k), 49%, 45%�, 48R, 40S(R0; R), So(R0; R), 83Spe(A), 93, 108S(z; t), 16�D, �, 68

Vol(M(z)), 18V reg, 41VU , V U , 83eX, 57X�r (p), 59Xu(p), 58X , 42
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IndexC � -ation, 43area (of loops), 18Bessel funtions, 52birational map, 87blow up, 74, 105, 112braid group, 8, 42braid group, trunated, 44Brieskorn's theorem, 43Chevalley's theorem, 42overing automorphism, 6overing map, 6Coxeter arrangement, 83Coxeter diagram, 41Coxeter diagram, marked, 43Coxeter element, 41, 46Coxeter integers, 41Coxeter matrix, 41Coxeter number, 41Cremona one, 82, 87rystallographi group, 66uspidal line, 105, 108uspidal point, 105degree (of overing), 6degree (of theta funtion), 68disriminant, 7domain, 4Dunkl onnetion, 49Euler vetor �eld, 51evaluation map, 11, 24, 55, 94, 108evaluation map, restrited, 57exponent (of diagram), 48

exponent (of di�erential equations),53exponent (of root system with mul-tipliity parameter), 91exponents (of funtion), 26faet, 43at setion, 50fundamental group, 6geometri quotient, 14, 23geometri realisation, 45GIT, 23, 82, 95Hartog's theorem, 5, 29, 59Hermitian form, 59, 71Hermitian struture, 19hyperboli diagram, 70hyperboli form, 19, 24, 47, 48hypergeometri funtion, 14, 107invariant fators, 67isomorphism theorem, 5Laplae operator, 52loal degree (of overing), 6maximum priniple, 4, 80monodromy representation, 10, 24,52, 93, 108monomial, 110Nilsson lass, 9, 23, 91open mapping theorem, 4paraboli diagram, 61120



paraboli form, 47, 63Poinar�e-Bergman metri, 28, 76point group, 65presentation, 61, 64, 77reetion representation, 44reetion representation, logarithmi,48regular part, 89Riemann extension theorem, 5root system, 40root system, paraboli, 83Shwarz-Christo�el map, 16speial eigenvalue, 45subregular, 8, 43symmetri group, 7symmetri polynomials, 7theta funtion, 65, 67translation, 65unit ball, 71vanishing multipliity, 95Wronskian, 11, 25, 55
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Complexe spiegelingsgroepen enhypergeometrishe funktiesIn de theorie van eindige re�ele spiegelingsgroepen zijn de resultaten betre�endepresentaties en invariantentheorie van dergelijke groepen nadrukkelijk aanwezig.Voor eindige (eventueel omplexe) spiegelingsgroepen in het algemeen is de in-variantentheorie evenzeer goed begrepen (in deze theorie is het niet van belangom de ordes van de voortbrengende spiegelingen te kennen). Op het gebied vanpresentaties van deze algemenere groepen ligt dat anders. Hier zijn presentatiesbeshreven door deze met een omputer geval voor geval te testen, hetgeen inessentie mogelijk is daar de betrokken groepen eindig zijn.In dit proefshrift wordt van een zekere klasse van omplexe spiegelingsgroepen(waaronder zowel eindige (Shephard-groepen) als niet-eindige groepen vallen)op een intrinsieke manier resultaten bewezen betre�ende presentaties en invari-anten.Belangrijkste hulpmiddel bij het opzetten van deze theorie zijn de hyperge-ometrishe funkties geassoieerd met wortelsystemen. In het bijzonder de al-gebra��she en meetkundige kant van het analytish voortzettingsgedrag wordtuitgebreid bestudeerd.Hoofdstuk 1 shetst de gevolgde methoden aan de hand van de symmetrishegroep. Hoofdstuk 2 traht reeds bekend werk van Deligne en Mostow in meerelementaire termen uiteen te zetten. Hoofdstuk 3 vormt in wezen de kern vandit proefshrift en behandelt willekeurige eindige wortelsystemen met daaraangerelateerde omplexe spiegelingsgroepen. Hoofdstuk 4 tenslotte is een aanzetom resultaten van hoofdstuk 3 in een algemenere vorm te kunnen begrijpen enbewijzen. Dit laatste hoofdstuk is voornamelijk meetkundig van aard.
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